First-Principles Calculation

  • Wai-Yim ChingEmail author
Part of the Springer Handbooks book series (SHB)


This chapter describes the application of first-principles calculation to investigate the structure and properties of different classes of glasses. These include insulating glasses, three types of metallic glasses, and an example of an amorphous metal–organic framework as an emerging hybrid organic glass. First-principles calculation differs from the more popular molecular dynamics simulation and can provide more in-depth information on interatomic interactions. In many highly complex multicomponent glass systems, ab initio calculation may be the only viable method for realistic modeling. Here it is demonstrated that first-principles calculation is best accomplished by a combination of methods with different strengths and advantages. We introduce the novel concept of using total bond order density as a single quantum mechanical metric to assess the strength and cohesion in different types of glasses by providing some provocative examples of the limitations and inadequacy in current theory for structure characterization of glasses. The chapter also highlights some urgent areas in glass research where first-principles calculations could play a more critical role.



I would like to acknowledge the contributions of many collaborators including the current and past graduate students, postdoctoral fellows and visiting scientists of the Electronic Structure Group at the University of Missouri-Kansas City; Professors Paul Rulis, R. Sakidja and Neng Li, Dr. Chamila Dharmawardhana, Dr. Sitaram Aryal, Ms. P. Adhikari, Mr. K. Baral and Dr. B. Walker. Special thanks go to Mr. Baral for making several figures and tables, and for careful checking of the references. I also thank many past and present collaborators on glasses started more than 40 years ago. This work has been supported in the past by DOE and NSF grants. Computational resources have been provided by the National Energy Research Scientific Computing Center supported by the DOE under contract no. DE-AC03-76SF00098 and by the University of Missouri Research Computing Support Services (RCSS).


  1. T. Vogt, T. Shinbrot: Editorial: Overlooking glass?, Phys. Rev. Appl. 3, 050001 (2015)CrossRefGoogle Scholar
  2. G. Greaves, S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56, 1–166 (2007)CrossRefGoogle Scholar
  3. M. Edén: NMR studies of oxide-based glasses, Annu. Rep. Progr. Chem. C 108, 177–221 (2012)CrossRefGoogle Scholar
  4. A.C. Wright: Borate structures: Crystalline and vitreous, Phys. Chem. Glasses B 51, 1–39 (2010)Google Scholar
  5. J.R. Jones: Reprint of ‘Review of bioactive glass: From Hench to hybrids', Acta Biomater. 23, S53–S82 (2015)CrossRefGoogle Scholar
  6. Z. Strnad: Role of the glass phase in bioactive glass-ceramics, Biomaterials 13, 317–321 (1992)CrossRefGoogle Scholar
  7. L.L. Hench: Bioceramics: From concept to clinic, J. Am. Ceram. Soc. 74, 1487–1510 (1991)CrossRefGoogle Scholar
  8. M.I. Ojovan, W.E. Lee: An Introduction to Nuclear Waste Immobilisation, 2nd edn. (Elsevier, Amsterdam 2013)Google Scholar
  9. I. Jackson: The Earth's Mantle: Composition, Structure, and Evolution (Cambridge Univ. Press, Cambridge 2000)Google Scholar
  10. L. Berthier, M.D. Ediger: Facets of glass physics, Phys. Today 69(1), 40 (2016)CrossRefGoogle Scholar
  11. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller: Equation of state calculations by fast computing machines, J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  12. B.J. Alder, T. Wainwright: Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459–466 (1959)CrossRefGoogle Scholar
  13. A. Rahman: Correlations in the motion of atoms in liquid argon, Phys. Rev. 136, A405 (1964)CrossRefGoogle Scholar
  14. D.C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge 2004)CrossRefGoogle Scholar
  15. D. Marx, J. Hutter: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, Cambridge 2009)CrossRefGoogle Scholar
  16. V. Gaydaenko, V. Nikulin: Born–Mayer interatomic potential for atoms with Z = 2 to Z = 36, Chem. Phys. Lett. 7, 360–362 (1970)CrossRefGoogle Scholar
  17. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard: Reax FF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRefGoogle Scholar
  18. R. Salomon-Ferrer, D.A. Case, R.C. Walker: An overview of the Amber biomoleculor simulation package, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198–210 (2013)CrossRefGoogle Scholar
  19. Computational Biophysics Workshop: Parameterizing a Novel Residue (Illinois, University of Illinois at Urbana-Champaign, Luthey-Schulten Group, Department of Chemistry, Theoretical and Computational Biophysics Group 2012)
  20. T.C. Germann, K. Kadau: Trillion-atom molecular dynamics becomes a reality, Int. J. Mod. Phys. C 19, 1315–1319 (2008)CrossRefGoogle Scholar
  21. Y. Shibuta, K. Oguchi, T. Takaki, M. Ohno: Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation, Sci. Rep. 5, 13534 (2015)CrossRefGoogle Scholar
  22. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal: The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter 14(11), 2745 (2002)CrossRefGoogle Scholar
  23. M.S. Daw, M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29, 6443 (1984)CrossRefGoogle Scholar
  24. J.D. Gale: GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc. Faraday Trans. 93, 629–637 (1997)CrossRefGoogle Scholar
  25. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  26. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten: Scalable molecular dynamics with NAMD, J. Comput. Chem. 26, 1781–1802 (2005), Scholar
  27. R. Car, M. Parrinello: Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  28. P. Hohenberg, W. Kohn: Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964)CrossRefGoogle Scholar
  29. W. Kohn, L.J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  30. J.M. Ziman: Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge 1979)Google Scholar
  31. G.E. Walrafen, A.G. Revesz: Structure and Bonding in Noncrystalline Solids (Plenum, New York 1986)CrossRefGoogle Scholar
  32. A. Kirschning, C. Altwicker, G. Dräger, J. Harders, N. Hoffmann, U. Hoffmann, H. Schönfeld, W. Solodenko, U. Kunz: Passflow syntheses using functionalized monolithic polymer/glass composites in flow-through microreactors, Angew. Chem. Int. Ed. 40, 3995–3998 (2001)CrossRefGoogle Scholar
  33. J.L. Keddie, R.A. Jones, R.A. Cory: Size-dependent depression of the glass transition temperature in polymer films, Europhys. Lett. 27, 59 (1994)CrossRefGoogle Scholar
  34. D.R. Clarke: On the equilibrium thickness of intergranular glass phases in ceramic materials, J. Am. Ceram. Soc. 70, 15–22 (1987)CrossRefGoogle Scholar
  35. H.-J. Kleebe: Influence of secondary phase chemistry on grain-boundary film thickness in silicon-nitride, Z. Metallkd. 83, 610–617 (1992)Google Scholar
  36. I. Tanaka, H.-J. Kleebe, M.K. Cinibulk, J. Bruley, D.R. Clarke, M. Ruhle: Calcium concentration dependence of the intergranular film thickness in silicon nitride, J. Am. Ceram. Soc. 77, 911–914 (1994)CrossRefGoogle Scholar
  37. A. Subramaniam, C.T. Koch, R.M. Cannon, M. Rühle: Intergranular glassy films: An overview, Mater. Sci. Eng. A 422, 3–18 (2006)CrossRefGoogle Scholar
  38. University of Vienna: VASP,
  39. Castep Developers Group: Castep,
  40. Quantum ESPRESSO Foundation:
  41. ABINIT Group:
  42. P. Blaha, K. Schwarz, G. Madsen, D. Krasnicka, J. Luitz: WIEN2k,
  43. M. Ferrero, M. Rérat, R. Orlando, R. Dovesi: The calculation of static polarizabilities of 1–3-D periodic compounds. The implementation in the crystal code, J. Comput. Chem. 29, 1450–1459 (2008)CrossRefGoogle Scholar
  44. G.T. Te Velde, F.M. Bickelhaupt, E.J. Baerends, C.F. Guerra, S.J. van Gisbergen, J.G. Snijders, T. Ziegler: Chemistry with ADF, J. Comput. Chem. 22, 931–967 (2001)CrossRefGoogle Scholar
  45. A.B. Belonoshko, T. Lukinov, J. Fu, J. Zhao, S. Davis, S.I. Simak: Stabilization of body-centred cubic iron under inner-core conditions, Nat. Geosci. 10, 312–316 (2017)CrossRefGoogle Scholar
  46. IMB Corp., Max Planck Institute: The CPMP Consortium page,
  47. R. Parr, W. Yang: Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford 1989)Google Scholar
  48. W.-Y. Ching, P. Rulis: Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals (Oxford Univ. Press, Oxford 2012)CrossRefGoogle Scholar
  49. S. Aryal, M. Gao, L. Ouyang, P. Rulis, W. Ching: Ab initio studies of Mo-based alloys: Mechanical, elastic, and vibrational properties, Intermetallics 38, 116–125 (2013)CrossRefGoogle Scholar
  50. W.-Y. Ching, Y. Mo, S. Aryal, P. Rulis: Intrinsic mechanical properties of 20 MAX-phase compounds, J. Am. Ceram. Soc. 96, 2292–2297 (2013)CrossRefGoogle Scholar
  51. L. Liang, P. Rulis, W.-Y. Ching: Mechanical properties, electronic structure and bonding of \(\upalpha\)- and \(\upbeta\)-tricalcium phosphates with surface characterization, Acta Biomater. 6, 3763–3771 (2010)CrossRefGoogle Scholar
  52. S. Aryal, P. Rulis, L. Ouyang, W.-Y. Ching: Structure and properties of the low-density phase \(\iota\)-Al2O3 from first principles, Phys. Rev. B 84, 174123 (2011)CrossRefGoogle Scholar
  53. C. Dharmawardhana, A. Misra, S. Aryal, P. Rulis, W.-Y. Ching: Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals, Cem. Concr. Res. 52, 123–130 (2013)CrossRefGoogle Scholar
  54. L. Wang, Y. Mo, P. Rulis, W.Y. Ching: Spectroscopic properties of crystalline elemental boron and the implications on B11C–CBC, RSC Advances 3, 25374–25387 (2013)CrossRefGoogle Scholar
  55. S. Aryal, R. Sakidja, M.W. Barsoum, W.Y. Ching: A genomic approach to the stability, elastic, and electronic properties of the MAX phases, Phys. Status Solidi (b) 251, 1480–1497 (2014)CrossRefGoogle Scholar
  56. L. Liang, P. Rulis, L. Ouyang, W.Y. Ching: Ab initio investigation of hydrogen bonding and network structure in a supercooled model of water, Phys. Rev. B 83, 024201 (2011)CrossRefGoogle Scholar
  57. L. Liang, P. Rulis, B. Kahr, W.Y. Ching: Theoretical study of the large linear dichroism of herapathite, Phys. Rev. B 80, 235132 (2009)CrossRefGoogle Scholar
  58. P. Adhikari, R. Khaoulaf, H. Ez-Zahraouy, W.-Y. Ching: Complex interplay of interatomic bonding in a multi-component pyrophosphate crystal: K2Mg(H2P2O7)2\(\cdot\)2H2O, R. Soc. Open Sci. 4, 170982 (2017)CrossRefGoogle Scholar
  59. P. Adhikari, A.M. Wen, R.H. French, V.A. Parsegian, N.F. Steinmetz, R. Podgornik, W.-Y. Ching: Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide, Sci. Rep. 4, 5605 (2014)CrossRefGoogle Scholar
  60. L. Poudel, P. Rulis, L. Liang, W.Y. Ching: Electronic structure, stacking energy, partial charge, and hydrogen bonding in four periodic B-DNA models, Phys. Rev. E 90, 022705 (2014)CrossRefGoogle Scholar
  61. L. Poudel, N.F. Steinmetz, R.H. French, V.A. Parsegian, R. Podgornik, W.-Y. Ching: Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA, Phys. Chem. Chem. Phys. 18, 21573–21585 (2016)CrossRefGoogle Scholar
  62. L. Poudel, R. Twarock, N.F. Steinmetz, R. Podgornik, W.-Y. Ching: Impact of hydrogen bonding in the binding site between capsid protein and MS2 bacteriophage ssRNA, J. Phy. Chem. B 121, 6321–6330 (2017)CrossRefGoogle Scholar
  63. L. Poudel, C. Tamerler, A. Misra, W.-Y. Ching: Atomic-scale quantification of interfacial binding between peptides and inorganic crystals: The case of calcium carbonate binding peptide on aragonite, J. Phys. Chem. C 121, 28354–28363 (2017)CrossRefGoogle Scholar
  64. R.S. Mulliken: Electronic population analysis on LCAO–MO molecular wave functions. I, J. Chem. Phys. 23, 1833–1840 (1955)CrossRefGoogle Scholar
  65. R. Mulliken: Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies, J. Chem. Phys. 23, 1841–1846 (1955)CrossRefGoogle Scholar
  66. R. Bader: Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford 1990)Google Scholar
  67. S. Aryal, R. Sakidja, L. Ouyang, W.-Y. Ching: Elastic and electronic properties of Ti2Al(CxN1-x) solid solutions, J. Eur. Ceram. Soc. 35, 3219–3227 (2015)CrossRefGoogle Scholar
  68. C. Dharmawardhana, A. Misra, W.-Y. Ching: Quantum mechanical metric for internal cohesion in cement crystals, Sci. Rep. 4, 7332 (2014)CrossRefGoogle Scholar
  69. C. Dharmawardhana, M. Bakare, A. Misra, W.Y. Ching: Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates, J. Am. Ceram. Soc. 99, 2120–2130 (2016)CrossRefGoogle Scholar
  70. P.C. Martin: Sum rules, Kramers–Kronig relations, and transport coefficients in charged systems, Phys. Rev. 161, 143 (1967)CrossRefGoogle Scholar
  71. H. Yao, L. Ouyang, W.Y. Ching: Ab initio calculation of elastic constants of ceramic crystals, J. Am. Ceram. Soc. 90, 3194–3204 (2007)CrossRefGoogle Scholar
  72. O. Nielsen, R.M. Martin: First-principles calculation of stress, Phys. Rev. Lett. 50, 697 (1983)CrossRefGoogle Scholar
  73. W. Voigt: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik) (Vieweg, Wiesbaden 1966), Reprint of the original from 1928CrossRefGoogle Scholar
  74. A. Reuss: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech. 9, 49–58 (1929)CrossRefGoogle Scholar
  75. R. Hill: The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65, 349 (1952)CrossRefGoogle Scholar
  76. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A. 103, 10186–10191 (2006)CrossRefGoogle Scholar
  77. S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M.P. Suh, J. Reedijk: Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013), Pure Appl. Chem. 85, 1715–1724 (2013)CrossRefGoogle Scholar
  78. Y. Liu, Y. Ma, Y. Zhao, X. Sun, F. Gándara, H. Furukawa, Z. Liu, H. Zhu, C. Zhu, K. Suenaga: Weaving of organic threads into a crystalline covalent organic framework, Science 351, 365–369 (2016)CrossRefGoogle Scholar
  79. P. Adhikari, M. Xiong, N. Li, X. Zhao, P. Rulis, W.-Y. Ching: Structure and electronic properties of a continuous random network model of amorphous zeolitic imidazolate framework (a-ZIF), J. Phys. Chem. C 28, 15362–15368 (2016)CrossRefGoogle Scholar
  80. K. Baral, W.-Y. Ching: Electronic structures and physical properties of Na2O doped silicate glass, J. Appl. Phys. 121, 245103 (2017)CrossRefGoogle Scholar
  81. K. Baral, A. Li, W.-Y. Ching: Ab initio modeling of structure and properties of single and mixed alkali silicate glasses, J. Phys. Chem. A 121, 7697–7708 (2017)CrossRefGoogle Scholar
  82. Y. Yu, M. Edén: Structure–composition relationships of bioactive borophosphosilicate glasses probed by multinuclear 11B, 29Si, and 31P solid state NMR, RSC Advances 6, 101288–101303 (2016)CrossRefGoogle Scholar
  83. A. Tilocca, A.N. Cormack, N.H. de Leeuw: The structure of bioactive silicate glasses: New insight from molecular dynamics simulations, Chem. Mater. 19, 95–103 (2007)CrossRefGoogle Scholar
  84. A. Zeidler, K. Wezka, D.A. Whittaker, P.S. Salmon, A. Baroni, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker: Density-driven structural transformations in B2O3 glass, Phys. Rev. B 90, 024206 (2014)CrossRefGoogle Scholar
  85. W.Y. Ching: Microscopic calculation of localized electron states in an intrinsic glass, Phys. Rev. Lett. 46, 607 (1981)CrossRefGoogle Scholar
  86. L. Guttman, W.Y. Ching, J. Rath: Charge-density variation in a model of amorphous silicon, Phys. Rev. Lett. 44, 1513 (1980)CrossRefGoogle Scholar
  87. M.-Z. Huang, W.Y. Ching: Electron states in a nearly ideal random-network model of amorphous SiO2 glass, Phys. Rev. B 54, 5299 (1996)CrossRefGoogle Scholar
  88. M.-Z. Huang, L. Ouyang, W.Y. Ching: Electron and phonon states in an ideal continuous random network model of a-SiO2 glass, Phys. Rev. B 59, 3540 (1999)CrossRefGoogle Scholar
  89. N. Li, W.-Y. Ching: Structural, electronic and optical properties of a large random network model of amorphous SiO2 glass, J. Non-Cryst. Solids 383, 28–32 (2014)CrossRefGoogle Scholar
  90. N. Li, R. Sakidja, S. Aryal, W.-Y. Ching: Densification of a continuous random network model of amorphous SiO2 glass, Phys. Chem. Chem. Phys. 16, 1500–1514 (2014)CrossRefGoogle Scholar
  91. M. Wu, Y. Liang, J.-Z. Jiang, J.S. Tse: Structure and properties of dense silica glass, Sci. Rep. 2, 398 (2012)CrossRefGoogle Scholar
  92. T. Sato, N. Funamori: High-pressure structural transformation of SiO2 glass up to 100 GPa, Phys. Rev. B 82, 184102 (2010)CrossRefGoogle Scholar
  93. C.-S. Zha, R.J. Hemley, H.-K. Mao, T.S. Duffy, C. Meade: Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering, Phys. Rev. B 50, 13105 (1994)CrossRefGoogle Scholar
  94. C. Tarrio, S.E. Schnatterly: Optical properties of silicon and its oxides, J. Opt. Soc. Am. B 10, 952–957 (1993)CrossRefGoogle Scholar
  95. B. Walker, C.C. Dharmawardhana, N. Dari, P. Rulis, W.-Y. Ching: Electronic structure and optical properties of amorphous GeO2 in comparison to amorphous SiO2, J. Non-Cryst. Solids 428, 176–183 (2015)CrossRefGoogle Scholar
  96. R.C. Weast, M.J. Astle, W.H. Beyer: CRC Handbook of Chemistry and Physics, Vol. 69 (CRC, Boca Raton 1988)Google Scholar
  97. E.M. Dianov, V.M. Mashinsky: Germania-based core optical fibers, J. Lightwave Technol. 23, 3500 (2005)CrossRefGoogle Scholar
  98. L. Pajasová: Optical properties of GeO2 in the ultraviolet region, Czechoslov. J. Phys. B 19, 1265–1270 (1969)CrossRefGoogle Scholar
  99. L. Pajasová, D. Chvostová, L. Jastrabík, J. Polách: Optical properties of reactively sputtered GeO2 in the vacuum ultraviolet region, J. Non-Cryst. Solids 182, 286–292 (1995)CrossRefGoogle Scholar
  100. A.N. Trukhin: Luminescence of a self-trapped exciton in GeO2 crystal, Solid State Commun. 85, 723–728 (1993)CrossRefGoogle Scholar
  101. K. Baral, P. Adhikari, W.Y. Ching: Ab initio modeling of the electronic structures and physical properties of a-Si1–xGexO2 glass (x = 0 to 1), J. Am. Ceram. Soc. 99, 3677–3684 (2016)CrossRefGoogle Scholar
  102. Y. Huang, A. Sarkar, P. Schultz: Relationship between composition, density and refractive index for germania silica glasses, J. Non-Cryst. Solids 27, 29–37 (1978)CrossRefGoogle Scholar
  103. C. Ho, K. Pita, N. Ngo, C. Kam: Optical functions of (x)GeO2:(1-x)SiO2 films determined by multi-sample and multi-angle spectroscopic ellipsometry, Opt. Express 13, 1049–1054 (2005)CrossRefGoogle Scholar
  104. J.W. Fleming: Dispersion in GeO2–SiO2 glasses, Appl. Opt. 23, 4486–4493 (1984)CrossRefGoogle Scholar
  105. A. Makishima, J.D. Mackenzie: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass, J. Non-Cryst. Solids 17, 147–157 (1975)CrossRefGoogle Scholar
  106. B. Bridge, N. Patel, D. Waters: On the elastic constants and structure of the pure inorganic oxide glasses, Phys. Status Solidi (a) 77, 655–668 (1983)CrossRefGoogle Scholar
  107. S. Pugh: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954)CrossRefGoogle Scholar
  108. P. Duwez, R. Willens, W. Klement Jr.: Continuous series of metastable solid solutions in silver–copper alloys, J. Appl. Phys. 31, 1136–1137 (1960)CrossRefGoogle Scholar
  109. W. Klement, R. Willens, P. Duwez: Non-crystalline structure in solidified gold–silicon alloys, Nature 187, 869–870 (1960)CrossRefGoogle Scholar
  110. H. Chen: Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metall. 22, 1505–1511 (1974)CrossRefGoogle Scholar
  111. H. Kui, A.L. Greer, D. Turnbull: Formation of bulk metallic glass by fluxing, Appl. Phys. Lett. 45, 615–616 (1984)CrossRefGoogle Scholar
  112. M.F. Ashby, A.L. Greer: Metallic glasses as structural materials, Scr. Mater. 54, 321–326 (2006)CrossRefGoogle Scholar
  113. M. Telford: The case for bulk metallic glass, Mater. Today 7, 36–43 (2004)CrossRefGoogle Scholar
  114. A.L. Greer: Metallic glasses, Science 267, 1947 (1995)CrossRefGoogle Scholar
  115. H. Sheng, W. Luo, F. Alamgir, J. Bai, E. Ma: Atomic packing and short-to-medium-range order in metallic glasses, Nature 439, 419–425 (2006)CrossRefGoogle Scholar
  116. A. Inoue: Bulk amorphous and nanocrystalline alloys with high functional properties, Mater. Sci. Eng. A 304, 1–10 (2001)CrossRefGoogle Scholar
  117. W.-H. Wang, C. Dong, C. Shek: Bulk metallic glasses, Mater. Sci. Eng. R. Rep. 44, 45–89 (2004)CrossRefGoogle Scholar
  118. J. Schroers: Bulk metallic glasses, Phys. Today 66, 32 (2013)CrossRefGoogle Scholar
  119. S.S. Jaswal, W.Y. Ching, D.J. Sellmyer, P. Edwardson: Electronic structure of metallic glasses: CuZr2, Solid State Commun. 42, 247–249 (1982)CrossRefGoogle Scholar
  120. S.S. Jaswal, W.Y. Ching: Electronic structure of Cu60Zr40 glass, Phys. Rev. B 26, 1064 (1982)CrossRefGoogle Scholar
  121. S.S. Jaswal, W.Y. Ching: Electronic structure of Pd41Zr59 glass, J. Non-Cryst. Solids 61, 1273–1276 (1984)CrossRefGoogle Scholar
  122. W.Y. Ching: Electronic structures of amorphous Ni1–xPx glasses, Phys. Rev. B 34, 2080 (1986)CrossRefGoogle Scholar
  123. G.-L. Zhao, W.Y. Ching: Microscopic real-space approach to the theory of metallic glasses, Phys. Rev. Lett. 62, 2511 (1989)CrossRefGoogle Scholar
  124. W.Y. Ching: Ching replies, Phys. Rev. Lett. 64, 1181 (1990)CrossRefGoogle Scholar
  125. W.Y. Ching, G.-L. Zhao, Y. He: Theory of metallic glasses. I. Electronic structures, Phys. Rev. B 42, 10878 (1990)CrossRefGoogle Scholar
  126. G.-L. Zhao, Y. He, W.Y. Ching: Theory of metallic glasses. II. Transport and optical properties, Phys. Rev. B 42, 10887 (1990)CrossRefGoogle Scholar
  127. W.Y. Ching, Y.N. Xu: Electronic structure and Fe moment distribution in a-Fe1–xBx glass by first-principles calculations, J. Appl. Phys. 70, 6305–6307 (1991)CrossRefGoogle Scholar
  128. X.F. Zhong, W.Y. Ching: First-principles calculation of orbital moment distribution in amorphous Fe, J. Appl. Phys. 75, 6834–6836 (1994)CrossRefGoogle Scholar
  129. T. Egami, Y. Waseda: Atomic size effect on the formability of metallic glasses, J. Non-Cryst. Solids 64, 113–134 (1984)CrossRefGoogle Scholar
  130. N.N. Medvedev, V.P. Voloshin, V.A. Luchnikov, M.L. Gavrilova: An algorithm for three-dimensional Voronoi S-network, J. Comput. Chem. 27, 1676–1692 (2006)CrossRefGoogle Scholar
  131. K.-H. Kang, K.-W. Park, J.-C. Lee, E. Fleury, B.-J. Lee: Correlation between plasticity and other materials properties of Cu–Zr bulk metallic glasses: An atomistic simulation study, Acta Mater. 59, 805–811 (2011)CrossRefGoogle Scholar
  132. K.-W. Park, J.-I. Jang, M. Wakeda, Y. Shibutani, J.-C. Lee: Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys, Scr. Mater. 57, 805–808 (2007)CrossRefGoogle Scholar
  133. J.J. Lewandowski, W.H. Wang, A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85, 77–87 (2005)CrossRefGoogle Scholar
  134. C. Wang, S. Tu, Y. Yu, J. Han, X. Liu: Experimental investigation of phase equilibria in the Zr-Cu-Al system, Intermetallics 31, 1–8 (2012)CrossRefGoogle Scholar
  135. H. Yang, J. Wang, Y. Li: Glass formation in the ternary Zr-Zr2Cu-Zr2Ni system, J. Non-Cryst. Solids 352, 832–836 (2006)CrossRefGoogle Scholar
  136. Y. Oka, M. Tomozawa: Effect of alkaline earth ion as an inhibitor to alkaline attack on silica glass, J. Non-Cryst. Solids 42, 535–543 (1980)CrossRefGoogle Scholar
  137. X. Bai, J. Li, Y. Cui, Y. Dai, N. Ding, B. Liu: Formation and structure of Cu-Zr-Al ternary metallic glasses investigated by ion beam mixing and calculation, J. Alloy. Compd. 522, 35–38 (2012)CrossRefGoogle Scholar
  138. H. Peng, M. Li, W. Wang: Structural signature of plastic deformation in metallic glasses, Phys. Rev. Lett. 106, 135503 (2011)CrossRefGoogle Scholar
  139. J. Antonowicz, A. Pietnoczka, K. Pękała, J. Latuch, G. Evangelakis: Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses, J. Appl. Phys. 115, 203714 (2014)CrossRefGoogle Scholar
  140. L. Yang, G. Guo, L. Chen, C. Huang, T. Ge, D. Chen, P. Liaw, K. Saksl, Y. Ren, Q. Zeng: Atomic-scale mechanisms of the glass-forming ability in metallic glasses, Phys. Rev. Lett. 109, 105502 (2012)CrossRefGoogle Scholar
  141. G. Kumar, T. Ohkubo, T. Mukai, K. Hono: Plasticity and microstructure of Zr-Cu-Al bulk metallic glasses, Scr. Mater. 57, 173–176 (2007)CrossRefGoogle Scholar
  142. Y. Yokoyama, T. Yamasaki, P.K. Liaw, A. Inoue: Relations between the thermal and mechanical properties of cast Zr-TM-Al (TM: Cu, Ni, or Co) bulk glassy alloys, Mater. Trans. 48, 1846–1849 (2007)CrossRefGoogle Scholar
  143. Y. Cheng, E. Ma, H. Sheng: Atomic level structure in multicomponent bulk metallic glass, Phys. Rev. Lett. 102, 245501 (2009)CrossRefGoogle Scholar
  144. Y. Yokoyama, H. Tokunaga, A.R. Yavari, T. Kawamata, T. Yamasaki, K. Fujita, K. Sugiyama, P.K. Liaw, A. Inoue: Tough hypoeutectic Zr-based bulk metallic glasses, Metall. Mater. Trans. A 42, 1468–1475 (2011)CrossRefGoogle Scholar
  145. J. Hwang, Z. Melgarejo, Y. Kalay, I. Kalay, M. Kramer, D. Stone, P. Voyles: Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass, Phys. Rev. Lett. 108, 195505 (2012)CrossRefGoogle Scholar
  146. J. Bendert, A. Gangopadhyay, N. Mauro, K. Kelton: Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: An energy landscape interpretation, Phys. Rev. Lett. 109, 185901 (2012)CrossRefGoogle Scholar
  147. L. Yang, T. Ge, G. Guo, C. Huang, X. Meng, S. Wei, D. Chen, L. Chen: Atomic and cluster level dense packing contributes to the high glass-forming ability in metallic glasses, Intermetallics 34, 106–111 (2013)CrossRefGoogle Scholar
  148. Y. Li, Q. Guo, J. Kalb, C. Thompson: Matching glass-forming ability with the density of the amorphous phase, Science 322, 1816–1819 (2008)CrossRefGoogle Scholar
  149. S. Plimpton, P. Crozier, A. Thompson: LAMMPS-large-scale atomic/molecular massively parallel simulator, Sandia Natl. Laboratories 18, 43 (2007)Google Scholar
  150. T. Rouxel, Y. Yokoyama: Elastic properties and atomic bonding character in metallic glasses, J. Appl. Phys. 118, 044901 (2015)CrossRefGoogle Scholar
  151. X.D. Wang, S. Aryal, C. Zhong, W.Y. Ching, H.W. Sheng, H. Zhang, D.X. Zhang, Q.P. Cao, J.Z. Jiang: Atomic picture of elastic deformation in a metallic glass, Sci. Rep. 5, 9184 (2015)CrossRefGoogle Scholar
  152. Q. Jiang, P. Liu, Y. Ma, Q. Cao, X. Wang, D. Zhang, X. Han, Z. Zhang, J. Jiang: Super elastic strain limit in metallic glass films, Sci. Rep. 2, 852 (2012)CrossRefGoogle Scholar
  153. W.H. Wang: Correlations between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys. 99, 093506 (2006)CrossRefGoogle Scholar
  154. W.Y. Ching, P. Rulis, L. Ouyang, S. Aryal, A. Misra: Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic \(\upbeta\)-Si3N4, Phys. Rev. B 81, 214120 (2010)CrossRefGoogle Scholar
  155. S. Aryal, P. Rulis, W. Ching: Mechanism for amorphization of boron carbide B4C under uniaxial compression, Phys. Rev. B 84, 184112 (2011)CrossRefGoogle Scholar
  156. W.Y. Ching, P. Rulis, A. Misra: Ab initio elastic properties and tensile strength of crystalline hydroxyapatite, Acta Biomater. 5, 3067–3075 (2009)CrossRefGoogle Scholar
  157. A. Misra, W.Y. Ching: Theoretical nonlinear response of complex single crystal under multi-axial tensile loading, Sci. Rep. 3, 1488 (2013)CrossRefGoogle Scholar
  158. J. Antonowicz, A. Pietnoczka, G. Evangelakis, O. Mathon, I. Kantor, S. Pascarelli, A. Kartouzian, T. Shinmei, T. Irifune: Atomic-level mechanism of elastic deformation in the Zr–Cu metallic glass, Phys. Rev. B 93, 144115 (2016)CrossRefGoogle Scholar
  159. B. Hunca, C. Dharmawardhana, R. Sakidja, W.-Y. Ching: Ab initio calculations of thermomechanical properties and electronic structure of vitreloy Zr41.2Ti13.8Cu12.5Ni10Be22.5, Phys. Rev. B 94, 144207 (2016)CrossRefGoogle Scholar
  160. A. Peker, W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett. 63, 2342–2344 (1993)CrossRefGoogle Scholar
  161. W.H. Wang: The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57, 487–656 (2012)CrossRefGoogle Scholar
  162. J. Lu, G. Ravichandran, W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Mater. 51, 3429–3443 (2003)CrossRefGoogle Scholar
  163. R. Busch, Y. Kim, W. Johnson: Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy, J. Appl. Phys. 77, 4039–4043 (1995)CrossRefGoogle Scholar
  164. X. Hui, H. Fang, G. Chen, S. Shang, Y. Wang, J. Qin, Z. Liu: Atomic structure of Zr41.2Ti13.8Cu 12.5Ni10Be22.5 bulk metallic glass alloy, Acta Mater. 57, 376–391 (2009)CrossRefGoogle Scholar
  165. P.E. Blöchl: Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
  166. J.P. Perdew: Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole, Phys. Rev. Lett. 55, 1665–1668 (1985)CrossRefGoogle Scholar
  167. C. Dharmawardhana, R. Sakidja, S. Aryal, W.Y. Ching: In search of zero thermal expansion anisotropy in Mo5Si3 by strategic alloying, J. Alloys Compd. 620, 427–433 (2015)CrossRefGoogle Scholar
  168. C. Dharmawardhana, R. Sakidja, S. Aryal, W.Y. Ching: Temperature dependent mechanical properties of Mo–Si–B compounds via ab initio molecular dynamics, APL Materials 1, 012106 (2013)CrossRefGoogle Scholar
  169. U. Gerold, A. Wiedenmann, R. Bellissent, M.-P. Macht, H. Wollenberger: Local atomic correlations of bulk amorphous ZrTiCuNiBe alloys, Nanostruct. Mater. 12, 605–608 (1999)CrossRefGoogle Scholar
  170. C. Rao, A. Cheetham, A. Thirumurugan: Hybrid inorganic–organic materials: A new family in condensed matter physics, J. Phys. Condens. Matter 20, 083202 (2008)CrossRefGoogle Scholar
  171. G. Férey: Some suggested perspectives for multifunctional hybrid porous solids, Dalton Trans. 23, 4400–4415 (2009)CrossRefGoogle Scholar
  172. H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi: The chemistry and applications of metal–organic frameworks, Science 341, 1230444 (2013)CrossRefGoogle Scholar
  173. J.E. Mondloch, M.J. Katz, W.C. Isley III, P. Ghosh, P. Liao, W. Bury, G.W. Wagner, M.G. Hall, J.B. DeCoste, G.W. Peterson: Destruction of chemical warfare agents using metal–organic frameworks, Nature Mater. 14, 512–516 (2015)CrossRefGoogle Scholar
  174. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science 319, 939–943 (2008)CrossRefGoogle Scholar
  175. U.P. Tran, K.K. Le, N.T. Phan: Expanding applications of metal–organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction, ACS Catalysis 1, 120–127 (2011)CrossRefGoogle Scholar
  176. Y.Q. Tian, C.X. Cai, X.M. Ren, C.Y. Duan, Y. Xu, S. Gao, X.Z. You: The silica-like extended polymorphism of cobalt (II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties, Chem. Eur. J. 9, 5673–5685 (2003)CrossRefGoogle Scholar
  177. S. Liu, Z. Xiang, Z. Hu, X. Zheng, D. Cao: Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules, J. Mater. Chem. 21, 6649–6653 (2011)CrossRefGoogle Scholar
  178. T.D. Bennett, J.-C. Tan, Y. Yue, E. Baxter, C. Ducati, N.J. Terrill, H.H.-M. Yeung, Z. Zhou, W. Chen, S. Henke: Hybrid glasses from strong and fragile metal–organic framework liquids, Nat. Commun. 6, 8079 (2015)CrossRefGoogle Scholar
  179. T.D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao, N.G. Greaves, T. Richards, G.I. Lampronti, S.A. Redfern, F. Blanc: Melt-quenched glasses of metal–organic frameworks, J. Am. Chem. Soc. 138, 3484–3492 (2016)CrossRefGoogle Scholar
  180. T.D. Bennett, A.L. Goodwin, M.T. Dove, D.A. Keen, M.G. Tucker, E.R. Barney, A.K. Soper, E.G. Bithell, J.-C. Tan, A.K. Cheetham: Structure and properties of an amorphous metal–organic framework, Phys. Rev. Lett. 104, 115503 (2010)CrossRefGoogle Scholar
  181. T.D. Bennett, P. Simoncic, S.A. Moggach, F. Gozzo, P. Macchi, D.A. Keen, J.-C. Tan, A.K. Cheetham: Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4), Chem. Commun. 47, 7983–7985 (2011)CrossRefGoogle Scholar
  182. T.D. Bennett, S. Cao, J.C. Tan, D.A. Keen, E.G. Bithell, P.J. Beldon, T. Friscic, A.K. Cheetham: Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks, J. Am. Chem. Soc. 133, 14546–14549 (2011)CrossRefGoogle Scholar
  183. T.D. Bennett, A.K. Cheetham: Amorphous metal–organic frameworks, Acc. Chem. Res. 47, 1555–1562 (2014)CrossRefGoogle Scholar
  184. R. Gaillac, P. Pullumbi, K.A. Beyer, K.W. Chapman, D.A. Keen, T.D. Bennett, F.-X. Coudert: Liquid metal–organic frameworks, Nat. Mater. 16, 1149 (2017)CrossRefGoogle Scholar
  185. A.K. Varshneya: Chemical strengthening of glass: Lessons learned and yet to be learned, Int. J. Appl. Glass Sci. 1, 131–142 (2010)CrossRefGoogle Scholar
  186. C.R. Kurkjian, P.K. Gupta, R.K. Brow: The strength of silicate glasses: What do we know, what do we need to know?, Int. J. Appl. Glass Sci. 1, 27–37 (2010)CrossRefGoogle Scholar
  187. A. Zakery, S.R. Elliott: Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Series in Optical Science, Vol. 135 (Springer, Berlin 2007)Google Scholar
  188. X. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, J. Lucas: Glasses for seeing beyond visible, Chem. Eur. J. 14, 432–442 (2008)CrossRefGoogle Scholar
  189. M. Fuentes-Cabrera, H. Wang, O.F. Sankey: Phase stability and pressure-induced semiconductor to metal transition in crystalline GeSe2, J. Phys. Condens. Matter 14, 9589 (2002)CrossRefGoogle Scholar
  190. A. Grzechnik, S. Stølen, E. Bakken, T. Grande, M. Mezouar: Structural transformations in three-dimensional crystalline GeSe2 at high pressures and high temperatures, J. Solid State Chem. 150, 121–127 (2000)CrossRefGoogle Scholar
  191. J.P. Guin, T. Rouxel, J.C. Sanglebœuf, I. Melscoët, J. Lucas: Hardness, toughness, and scratchability of germanium–selenium chalcogenide glasses, J. Am. Ceram. Soc. 85, 1545–1552 (2002)CrossRefGoogle Scholar
  192. J.C. Mauro, A.K. Varshneya: Modeling of rigidity percolation and incipient plasticity in germanium–selenium glasses, J. Am. Ceram. Soc. 90, 192–198 (2007)CrossRefGoogle Scholar
  193. W.-H. Wei, R.-P. Wang, X. Shen, L. Fang, B. Luther-Davies: Correlation between structural and physical properties in Ge-Sb-Se glasses, J. Phys. Chem. C 117, 16571–16576 (2013)CrossRefGoogle Scholar
  194. A. Fischer-Colbrie, A. Bienenstock, P. Fuoss, M.A. Marcus: Structure and bonding in photodiffused amorphous Ag-GeSe2 thin films, Phys. Rev. B 38, 12388 (1988)CrossRefGoogle Scholar
  195. G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, J.-L. Adam: Glass formation and properties of chalcogenides in a GeSe2-As2Se3-PbSe system, J. Am. Ceram. Soc. 90, 1500–1503 (2007)CrossRefGoogle Scholar
  196. A. Mao, B. Aitken, S. Sen: Synthesis and physical properties of chalcogenide glasses in the system BaSe–Ga2Se3-GeSe2, J. Non-Cryst. Solids 369, 38–43 (2013)CrossRefGoogle Scholar
  197. M. Durandurdu, D. Drabold: Simulation of pressure-induced polyamorphism in a chalcogenide glass GeSe2, Phys. Rev. B 65, 104208 (2002)CrossRefGoogle Scholar
  198. R. Holomb, V. Mitsa, S. Akyuz, E. Akalin: New ring-like models and ab initio DFT study of the medium-range structures, energy and electronic properties of GeSe2 glass, Philos. Mag. 93, 2549–2562 (2013)CrossRefGoogle Scholar
  199. R. Holomb, V. Mitsa, E. Akalin, S. Akyuz, M. Sichka: Ab initio and Raman study of medium range ordering in GeSe2 glass, J. Non-Cryst. Solids 373, 51–56 (2013)CrossRefGoogle Scholar
  200. A. Durif: Ultraphosphates. In: Crystal Chemistry of Condensed Phosphates, ed. by A. Durif (Springer, Boston 1995) pp. 359–374CrossRefGoogle Scholar
  201. L. Hench: Biomaterials, Science 208, 826–831 (1980)CrossRefGoogle Scholar
  202. I. Allan, H. Newman, M. Wilson: Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria, Biomaterials 22, 1683–1687 (2001)CrossRefGoogle Scholar
  203. G. Hayem: Tenology: A new frontier, Joint Bone Spine 68, 19–25 (2001)CrossRefGoogle Scholar
  204. B.-S. Kim, D.J. Mooney: Development of biocompatible synthetic extracellular matrices for tissue engineering, Trends Biotechnol. 16, 224–230 (1998)CrossRefGoogle Scholar
  205. M. Bitar, V. Salih, V. Mudera, J.C. Knowles, M.P. Lewis: Soluble phosphate glasses: In vitro studies using human cells of hard and soft tissue origin, Biomaterials 25, 2283–2292 (2004)CrossRefGoogle Scholar
  206. E. Tang, D. Di Tommaso, N.H. de Leeuw: Hydrogen transfer and hydration properties of HnPO43–n (n=0–3) in water studied by first principles molecular dynamics simulations, J. Chem. Phys. 130, 234502 (2009)CrossRefGoogle Scholar
  207. E. Tang, D. Di Tommaso, N.H. De Leeuw: An ab initio molecular dynamics study of bioactive phosphate glasses, Adv. Eng. Mater. 12, B331–B338 (2010)CrossRefGoogle Scholar
  208. A. Tilocca: Structural models of bioactive glasses from molecular dynamics simulations, Proc. R. Soc. A 465, 1003–1027 (2009)CrossRefGoogle Scholar
  209. R.A. Martin, G. Mountjoy, R.J. Newport: A molecular dynamics model of the atomic structure of dysprosium alumino-phosphate glass, J. Phys. Condens. Matter 21, 075102 (2009)CrossRefGoogle Scholar
  210. D. Ma, A. Stoica, X.-L. Wang, Z. Lu, B. Clausen, D. Brown: Elastic moduli inheritance and the weakest link in bulk metallic glasses, Phys. Rev. Lett. 108, 085501 (2012)CrossRefGoogle Scholar
  211. G.R. Khanolkar, M.B. Rauls, J.P. Kelly, O.A. Graeve, A.M. Hodge, V. Eliasson: Shock wave response of iron-based in situ metallic glass matrix composites, Sci. Rep. 6, 22568 (2016)CrossRefGoogle Scholar
  212. J. Lane: Fluid Fuel Reactors (Addison-Wesley, Reading 1958)Google Scholar
  213. ORNL: Technology and Applied R&D Needs for Molten Salt Chemistry, Vol. ORNL/LTR2017/135 (ORNL, Oak Ridge 2017)Google Scholar
  214. D.F. Williams, L.M. Toth, K.T. Clarno: Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR), ORNL/TM-2006/12 (ORNL, Oak Ridge 2006)CrossRefGoogle Scholar
  215. A. Cadiau, K. Adil, P. Bhatt, Y. Belmabkhout, M. Eddaoudi: A metal–organic framework–based splitter for separating propylene from propane, Science 353, 137–140 (2016)CrossRefGoogle Scholar
  216. H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O'Keeffe, O.M. Yaghi: Designed synthesis of 3-D covalent organic frameworks, Science 316, 268–272 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Physics & AstronomyUniversity of Missouri – Kansas CityKansas City, MOUSA

Personalised recommendations