Advertisement

Refractive Index of Optical Materials

  • Jean-Louis Meyzonnette
  • Jacques Mangin
  • Michel CathelinaudEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter deals with the use of methods for measuring the refractive index of optical materials. It contains five sections:

The first section recalls some bases of the electromagnetic theory of light leading to the main characteristics of the index of refraction, and their consequences in geometrical optics (Snell–Descartes laws), in the spectral transmission and absorption of optical media, or the polarization of light beams at interfaces between optical media.

The second section describes the more or less classical panel of methods that have been devised to measure refractive indices of bulk materials: these are essentially based upon either the refraction or reflection of light inside prisms (minimum deviation angle, Littrow methods,…) polarizing properties of optical boundaries (ellipsometric, Brewster configurations).

While the previous section consists of refractive index characterization at a given temperature, the third section is dedicated to the dependence of the refractive index upon the temperature: the normalized thermo-optic coefficient (NTOC) is defined here and an experimental set-up specially designed for this purpose by one of the authors is described in detail.

The last section is concerned with the fact that most optical components are thin film coated in order to improve their performance in transmission, reflection or absorption. Since spectrophotometry is extensively used to characterize these coatings, the operating principle of spectrophotometers is recalled, as well as the main parameters of these deposited films that one can expect to extract by using this technology from spectrophotometric measurements. Various spectrophotometric procedures are described to determine the optical constants of optical ‘‘systems'' (bulk and thin film compounds) in the case of homogeneous or inhomogeneous films, slightly absorbing or not.

References

  1. N.G. Van Kampen, F. Lurçat: Causalité et relations de Kramers-Kronig, J. Phys. Radium 22, 179–191 (1961)CrossRefGoogle Scholar
  2. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, M.E. Vartiainen: Kramers-Kronig Relations in Optical Materials (Springer, Berlin, Heidelberg 2005)Google Scholar
  3. J.F. Ogilvie, G.J. Fee: Equivalence of Kramers-Kronig and Fourier transforms to convert between optical dispersion and optical spectra, MATCH Commun. Math. Comput. Chem. 69, 249–262 (2013)Google Scholar
  4. M. Born, E. Wolf: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, Cambridge 1999)CrossRefGoogle Scholar
  5. A. Hadni: Essentials of Modern Physics Applied to the Study of the Infrared (Pergamon, Oxford 1967)Google Scholar
  6. H.A. Macleod: Thin-Film Optical Filters, 4th edn. (CRC, Boca Raton 2010)CrossRefGoogle Scholar
  7. F.S. Forman, A.V. Tikhonravov: Basics of Optics of Multilayer Systems (Edition Frontieres, Gif-sur-Yvette 1992)Google Scholar
  8. National Metrology Institute of Germany: https://www.ptb.de/cms/en.html (2015)
  9. D. Tentori, J.R. Lerma: Refractometry by minimum deviation accuracy analysis, Opt. Eng. 29(2), 160–168 (1990)CrossRefGoogle Scholar
  10. D.B. Leviton, B.J. Frey, T.K. Kvamme: High accuracy, absolute, cryogenic refractive index measurements of infrared lens materials for JWST NIRcam using CHARMS, Proc. SPIE 5904, 222–233 (2005)Google Scholar
  11. B.J. Frey, D.B. Leviton: Cryogenic High Accuracy Refraction Measuring System (CHARMS): A new facility for cryogenic infrared through farultraviolet refractive index measurements, Proc. SPIE 5494, 492–504 (2004)CrossRefGoogle Scholar
  12. C. Véret: Réfractométrie, Tech. Ing. R 6300, 1–12 (1995)Google Scholar
  13. J. Mangin: Indice de réfraction des matériaux optiques massifs. In: CNRS/ROP Workshop on metrology of refractive indices, Paris, 24-25/11/2008 (2009), http://www.rop.cnrs.fr/IMG/pdf/Indices_de_refraction.pdfGoogle Scholar
  14. R.M.A. Azzam, N.M. Bashara: Ellipsometry and Polarized Light (Elsevier, Amsterdam 1987)CrossRefGoogle Scholar
  15. G. Tompkins, W.A. McGahan: Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, New York 1999)Google Scholar
  16. H.G. Tompkins, E.A. Irene (Eds.): Handbook of Ellipsometry (William Andrew, Norwich, New York 2005)Google Scholar
  17. A. Rothen: The ellipsometer, an apparatus to measure thicknesses of thin surface films, Rev. Sci. Instrum. 16, 26–30 (1945)CrossRefGoogle Scholar
  18. F. Abeles: Surface electromagnetic waves ellipsometry, Surf. Sci. 56, 237–251 (1976)CrossRefGoogle Scholar
  19. D.E. Aspnes, J.B. Theeten, F. Hottier: Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry, Phys. Rev. B 20(8), 3292 (1979)CrossRefGoogle Scholar
  20. E.D. Palik: Handbook of Optical Constants of Solids (Academic, New York 1985)Google Scholar
  21. J.A. Faucher, G.M. McManus, H.J. Trurnit: Simplified Treatment of Ellipsometry, J. Opt. Soc. Am. 48(1), 51–54 (1958)CrossRefGoogle Scholar
  22. S. Huard: Polarisation de la lumière (Ed Masson, Paris 1994)Google Scholar
  23. R.C. Jones: A new calculus for the treatment of optical systems Part I, J. Opt. Soc. Am. 31, 486–493 (1941)Google Scholar
  24. R.C. Jones: A new calculus for the treatment of optical systems Part III, J. Opt. Soc. Am. 31, 500–503 (1941)CrossRefGoogle Scholar
  25. R.C. Jones: A new calculus for the treatment of optical systems Part IV, J. Opt. Soc. Am. 32, 488–493 (1942)CrossRefGoogle Scholar
  26. D.E. Aspnes: Spectroscopic ellipsometry — Past, present, and future, Thin Solid Films 571, 334–344 (2014)CrossRefGoogle Scholar
  27. J.M. Frigerio: Détermination des indices par ellipsométrie: Principes théoriques et limitations. In: CNRS/ROP Workshop Metrol. Refract. Indices, Paris, 24–25.11.2008 (2009), http://www.rop.cnrs.fr/spip.php?article349Google Scholar
  28. F. Bernoux, J.P. Piel, B. Castellon, C. Defranoux, J.H. Lecat, P. Boher, J.L. Stehle: Ellipsométrie – Théorie, Tech. Ing. R 6490, 1–13 (2003)Google Scholar
  29. L. Prod'homme: A new approach to the thermal change in the refractive index with temperature, Phys. Chem. Glasses 1, 145–153 (1960)Google Scholar
  30. A.J. Bosman, E.E. Havinga: Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev. 129, 1593–1600 (1963)CrossRefGoogle Scholar
  31. E.E. Havinga, A.J. Bosman: Temperature dependence of dielectric constant of crystals with NaCl and CsCl structure, Phys. Rev. 140, A292–A303 (1965)CrossRefGoogle Scholar
  32. J.M. Jewell: Model for the thermo-optic behavior of sodium borate and aluminosilicate, J. Non-Cryst. Solids 146, 145–153 (1992)CrossRefGoogle Scholar
  33. G. Gosh: Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses, Appl. Opt. 36, 1540–1546 (1997)CrossRefGoogle Scholar
  34. T. Zhang, M.-Q. Wu, S.-R. Zhang, J. Xiong, J.-M. Wang, D.-H. Zhang, F.-M. He, Z.-P. Li: Permittivity and its temperature dependence in hexagonal structure BN dominated by the local electric field, Chin. Phys. B 21, 077701-1–077701-8 (2012)Google Scholar
  35. G.N. Ramachandran: Thermo-optic of solids, Proc. Indian Acad. Sci. 25A, 498–515 (1947)CrossRefGoogle Scholar
  36. K.F. Trost: Die thermische Ausdehnung der Alkalihalogenide vom NaCl-Typ bei hohen und tiefen Temperaturen, Z. Naturforsch. 18b, 662–664 (1963)CrossRefGoogle Scholar
  37. H.H. Li: Refractive index of alkali halides and its temperature derivatives, J. Phys. Chem. Ref. Data 5, 329–528 (1976)CrossRefGoogle Scholar
  38. Korth Kristalle: http://www.korth.de
  39. S. Kumar: Thermal expansion of simple ionic crystals, Proc. Natl. Inst. Sci. India A25, 364–372 (1959)Google Scholar
  40. J.E. Rapp, H.D. Merchant: Thermal expansion of alkali halides from 70 to 570 K, J. Appl. Phys. 44, 3919–3923 (1973)CrossRefGoogle Scholar
  41. Corning Incorporated: https://www.corning.com
  42. M. Lallemand, J. Martinet: Influence de la température sur le coefficient thermo-optique des fluorures alcalino-terreux, Rev. Phys. Appl. 17, 111–117 (1982)CrossRefGoogle Scholar
  43. Amorphous Materials Inc.: http://www.amorphousmaterials.com
  44. HOYA CORPORATION USA Optics Division: http://www.hoyaoptics.com
  45. HIKARI GLASS Co., Ltd.: http://www.hikari-g.co.jp
  46. UMICORE Electro Optic Materials: http://www.opticalmaterials.umicore.com
  47. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra: Alkali Halides: A Handbok of Physical Properties (Springer, Berlin 2001)CrossRefGoogle Scholar
  48. D.B. Leviton, B.J. Frey: Temperature dependent absolute refractive index measurements of fused silica, Proc. SPIE 6273, 6273K (2006)Google Scholar
  49. B.D. Frey, D.B. Leviton: Automation, operation and data analysis in the cryogenic, high accuracy, refraction measuring system (CHARMS), Proc. SPIE 5904, 212–221 (2005)Google Scholar
  50. J.F. Nye: Physical Properties of Crystals (Clarendon, Oxford 1976)Google Scholar
  51. S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, J. Heningsen, A. Yelisseiev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, V. Sirutkaitis: Optical, vibrational, thermal, electrical, damage and phase-matching properties of lithium thioindate, J. Opt. Soc. Am. B 21, 1981–2007 (2004)CrossRefGoogle Scholar
  52. J. Mangin, G. Mennerat, G. Gadret, V. Badikov, J.-C. de Miscault: Comprehensive formulation of the temperature dependence dispersion of optical materials; illustration with case of temperature tuning of a mid-IR HgGa2S4 OPO, J. Opt. Soc. Am. B 26, 1702–1709 (2009)CrossRefGoogle Scholar
  53. J. Mangin, P. Strimer, L. Lahlou-Kassi: An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials, Meas. Sci. Technol. 4, 826–834 (1993)CrossRefGoogle Scholar
  54. G.E. Merritt: The interference method of measuring thermal expansion, J. Res. Natl. Bur. Stand. (US) 10, 59–76 (1932)CrossRefGoogle Scholar
  55. R.M. Walker, G.W. Cleek, I.H. Malitson, M.J. Dodge, T.A. Hahn: Optical and mechanical properties of some neodymium-doped glasses, J. Res. Natl. Bur. Stand. (US) 75A, 163–174 (1971)CrossRefGoogle Scholar
  56. R.M. Walker, G.W. Cleek: Refractive index of fused silica at low temperatures, J. Res. Natl. Bur. Stand. (US) 75A, 279–281 (1971)CrossRefGoogle Scholar
  57. R.M. Walker, G.W. Cleek: The effect of temperature and pressure on the refractive index of some oxide glasses, J. Res. Natl. Bur. Stand. (US) 77A, 755–763 (1973)CrossRefGoogle Scholar
  58. M. Okaji, H. Imai: A practical measurement system for accurate determination of linear thermal expansion coefficients, J. Phys. E Sci. Instrum. 17, 669–673 (1984)CrossRefGoogle Scholar
  59. P. Hariharan, D. Sen: Double-passed two-beam interferometers. II. Effect of specimen absorption and finite path difference, J. Opt. Soc. Am. 51, 1212–1218 (1961)CrossRefGoogle Scholar
  60. A.P. Müller, A. Cezairlaiyan: Interferometric technique for the subsecond measurement of thermal expansion at high temperatures: application to refractory metals, Int. J. Thermophys. 12, 643–656 (1991)CrossRefGoogle Scholar
  61. G. Gosh: Model for the thermo-optic coefficients of some standard optical glasses, J. Non-Cryst. Solids 189, 191–196 (1995)CrossRefGoogle Scholar
  62. W.J. Tropf, M.E. Thomas, T.J. Harris: Optical and physical properties of crystals and glasses. In: Handbook of Optics, Vol. II, ed. by M. Bass (McGraw-Hill, New York 1995)Google Scholar
  63. M.V. Hobden, J. Warner: The temperature dependence of the refractive indices of pure lithium niobate, Phys. Lett. 22, 243–244 (1966)CrossRefGoogle Scholar
  64. D.H. Jundt: Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Opt. Lett. 22, 1553–1555 (1997)CrossRefGoogle Scholar
  65. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, G. Gadret: Linear and nonlinear optical properties of MgO:LiTaO3, Appl. Phys. B 96, 423–432 (2009)CrossRefGoogle Scholar
  66. J. Mangin, G. Mennerat, P. Villeval: Thermal expansion, normalized thermo-optic-coefficients, and condition for second harmonic generation of a Nd:YAG laser with wide temperature bandwidth in RbTiOPO4, J. Opt. Soc. Am. B 28, 873–881 (2011)CrossRefGoogle Scholar
  67. W. Tropf, M.E. Thomas: Infrared refractive index and thermo-optic coefficient measurement at APL, Johns Hopkins APL Tech. Dig. 19, 293–298 (1998)Google Scholar
  68. O.S. Heavens: Measurement of optical constants of thin films. In: Physics of Thin Films (Academic, New York 1964)Google Scholar
  69. M. Cathelinaud: Les méthodes spectrophotométriques pour la détermination d'indice de couches minces. In: CNRS/ROP Workshop Metrol. Refract. Indices, Paris, 24–25.11.2008 (2009), http://www.rop.cnrs.fr/spip.php?article349Google Scholar
  70. P. Bousquet, F. Flory, P. Roche: Scattering from multilayer thin films: theory and experiment, J. Opt. Soc. Am. 71(9), 1115–1123 (1981)CrossRefGoogle Scholar
  71. A. Piegari, F. Flory: Optical Thin Films and Coatings: From Materials to Applications (Woodhead, Oxford 2013)Google Scholar
  72. C. Amra: Light scattering from multilayer optics. I. Tools of investigation, J. Opt. Soc. Am. A 11, 197–210 (1994)CrossRefGoogle Scholar
  73. S. Adachi: Model dielectric constants of GaP, GaAs, Gasb, InP, InAs, and InSb, Phys. Rev. B 35(14), 7454–7463 (1987)CrossRefGoogle Scholar
  74. V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh: Band gap determination in thick films from reflectance measurements, Opt. Mater. 12, 115–119 (1999)CrossRefGoogle Scholar
  75. P.S. Hauge: Polycrystalline silicon film thickness measurement from analysis of visible reflectance spectra, J. Opt. Soc. Am. 69(8), 1143–1152 (1979)CrossRefGoogle Scholar
  76. J.C. Manifacier, J. Gassiot, J.P. Fillard: A simple method for the determination of the optical constants, n, k and the thickness of a weakly absorbing thin film, J. Phys. E Sci. Instrum. 9, 1002–1004 (1976)CrossRefGoogle Scholar
  77. I. Ohlidal, K. Navrfitil, E. Schmidt: Simple method for the complete optical analysis of very thick and weakly absorbing films, Appl. Phys. A 29, 157–162 (1982)CrossRefGoogle Scholar
  78. R. Jacobsson: Inhomogeneous and coevaporated homogeneous films for optical applications, Phys. Thin Films 8, 51–98 (1975)Google Scholar
  79. J.P. Borgogno, B. Lazarides, E. Pelletier: Automatic determination of the optical constants of inhomogeneous thin films, Appl. Opt. 21, 4020–4029 (1982)CrossRefGoogle Scholar
  80. J.A. Dobrowolski, F.C. Ho, A. Waldorf: Determination of optical constants of thin film coating materials based on inverse synthesis, Appl. Opt. 22(20), 3191–3200 (1983)CrossRefGoogle Scholar
  81. F. Abeles: Methods for determining optical parameters of thin films. In: Progress in Optics, Vol. 2, ed. by E. Wolf (Elsevier, Amsterdam 1963)Google Scholar
  82. S.G. Tomlin: Optical reflection and transmission formulae for thin films, J. Phys. D 1, 1667–1671 (1968)CrossRefGoogle Scholar
  83. H. Wolter: Zur Optik dünner Metallfilme, Z. Phys. 105(5), 269–308 (1937)CrossRefGoogle Scholar
  84. M. Cathelinaud, F. Lemarquis, J. Loesel, B. Cousin: Metal-dielectric light absorbers manufactured by ion plating, Proc. SPIE 5250, 5250–5250–8 (2004)Google Scholar
  85. G. Hass, L. Hadley: Optical Constants of metals. In: American Institute of Physics Handbook, ed. by D.E. Gray (McGraw-Hill, New York 1972)Google Scholar
  86. M. Cathelinaud, F. Lemarquis, C. Amra: Index determination of opaque and semitransparent metallic films: Application to light absorbers, Appl. Opt. 41, 2546–2554 (2002)CrossRefGoogle Scholar
  87. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, Cambridge 1992)Google Scholar
  88. R.E. Denton, R.D. Campbell, S.G. Tomlin: The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence, J. Phys. D 5(4), 852–863 (1972)CrossRefGoogle Scholar
  89. B. Badoil, M. Cathelinaud, F. Lemarchand, F. Lemarquis, M. Lequime: Development of a Real-Time Reflectance and Transmittance Monitoring System for the Manufacturing of Metal-Dielectric Light Absorber. In: Proc. ESA/CNES ICSO (2006),  https://doi.org/10.1117/12.2308179CrossRefGoogle Scholar
  90. D.P. Arndt, R.M.A. Azzam, J.M. Bennett, J.P. Borgogno, C.K. Carniglia, W.E. Case, J.A. Dobrowolski, U.J. Gibson, T. Tuttle Hart, F.C. Ho, V.A. Hodgkin, W.P. Klapp, H.A. Macleod, E. Pelletier, M.K. Purvis, D.M. Quinn, D.H. Strome, R. Swenson, P.A. Temple, T.F. Thonn: Multiple determination of the optical constants of thin-film coating materials, Appl. Opt. 23(20), 3571–3596 (1984)CrossRefGoogle Scholar
  91. A. Duparré, D. Ristau: Optical interference coatings, Meas. Probl. Appl. Opt. 47(13), C179–C184 (2007)CrossRefGoogle Scholar
  92. A. Duparré, D. Ristau: Optical interference coatings measurement problem, Appl. Opt. 53(4), A281–A286 (2013)CrossRefGoogle Scholar
  93. F. Lemarchand, C. Deumié, M. Zerrad, L. Abel-Tiberini, B. Bertussi, G. Georges, B. Lazaridès, M. Cathelinaud, M. Lequime, C. Amra: Optical characterization of an unknown single layer: Institut Fresnel contribution to the Optical Interference Coatings 2004 Topical Meeting Measurement Problem, Appl. Opt. 45(7), 1312–1318 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jean-Louis Meyzonnette
    • 1
  • Jacques Mangin
    • 2
  • Michel Cathelinaud
    • 3
    Email author
  1. 1.Institut d’Optique Graduate SchoolPalaiseauFrance
  2. 2.Laboratoire Interdisciplinaire Carnot de BourgogneDijonFrance
  3. 3.Institute of Chemical Sciences Rennes, UMR CNRS 6226University of Rennes 1RennesFrance

Personalised recommendations