Optical Spectroscopy of Glass

  • Barrett G. Potter Jr.Email author
Part of the Springer Handbooks book series (SHB)


Optical spectroscopic methods offer an important means to investigate glass structure and its associated dynamics. Moreover, they provide a set of powerful tools to evaluate material optical performance for a broad range of applications. Successful use of optical spectroscopy requires an understanding of intrinsic phenomena associated with the interaction of light with matter, of concerns surrounding measurement tools and techniques, and of data analysis and interpretation. While not intended to be an exhaustive examination of all techniques and phenomena, the present work seeks to highlight concepts of significant interest to the study of solid-state material atomic and electronic structure, and associated optical spectroscopic properties, in the context of the study and application of glass.


  1. E. Hecht: Optics, 5th edn. (Pearson, London 2016)Google Scholar
  2. D.C. Harris, M.D. Berolucci: Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Oxford Univ. Press, Oxford 1978)Google Scholar
  3. P.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics, 3rd edn. (Oxford Univ. Press, New York 1997)Google Scholar
  4. B. Henderson, G.F. Imbusch: Optical Spectroscopy of Inorganic Solids (Oxford Univ. Press, Oxford 1985)Google Scholar
  5. W. Demtröder: Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd edn. (Springer, Berlin 2003)CrossRefGoogle Scholar
  6. A. Alessi, D. Di Francesca, S. Agnello, S. Girard, M. Cannas, N. Richard, A. Boukenter, Y. Ouerdane: Evidence of different red emissions in irradiated germanosilicate materials, J. Lumin. 177, 127–132 (2016)CrossRefGoogle Scholar
  7. L. Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, N. Richard: Ge(2), Ge(1) and Ge-E' centers in irradiated Ge-doped silica: A first-principles EPR study, Opt. Mater. Express 5(5), 1054–1064 (2015)CrossRefGoogle Scholar
  8. A. Trukhin, B. Poumellec: Photosensitivity of silica glass with germanium studied by photoinduced of thermally stimulated luminescence with vacuum ultraviolet radiation q, J. Non-Cryst. Solids 324, 21–28 (2003)CrossRefGoogle Scholar
  9. S. Girard, S. Member, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, S. Member, Y. Ouerdane, A. Boukenter, C. Marcandella: Radiation effects on silica-based optical fibers: Recent advances and future challenges, IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2015)CrossRefGoogle Scholar
  10. R. Naik, S.S. Chinnaiyah, R. Ganesan: Structural and optical modification in Bi doped As40S60 thin films structural and optical modification in Bi doped As40S60 thin films, AIP Conference Proceedings 1665, 070011 (2015)CrossRefGoogle Scholar
  11. A.N. Trukhin: Luminescence of localized states in silicon dioxide glass. A short review, J. Non-Cryst. Solids 357(8/9), 1931–1940 (2011)CrossRefGoogle Scholar
  12. D.L. Griscom: Trapped-electron centers in pure and doped glassy silica: A review and synthesis, J. Non-Cryst. Solids 357(8/9), 1945–1962 (2011)CrossRefGoogle Scholar
  13. R.A. Weeks, R.H. Magruder III, A. Stesmans: Review of some experiments in the 50 year saga of the E' center and suggestions for future research, J. Non-Cryst. Solids 354, 208–216 (2008)CrossRefGoogle Scholar
  14. G. Pacchioni, L. Skuja, D.L. Griscom (Eds.): Defects in SiO2 and Related Dielectrics: Science and Technology, NATO Science Series (Springer, Dordrecht 2000)Google Scholar
  15. K. Tanaka, K. Shimakawa: Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York 2011)CrossRefGoogle Scholar
  16. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, Y. Ouerdane: Evolution of photo-induced defects in Ge-doped fiber/preform: Influence of the drawing, Opt. Express 19(12), 11680–11690 (2011)CrossRefGoogle Scholar
  17. B.G. Potter Jr., K. Simmons-Potter: Photosensitive point defects in optical glasses: Science and applications, Nucl. Instrum. Methods Phys. Res. Sect. B 166(167), 771–781 (2000)CrossRefGoogle Scholar
  18. M. Olivier, P. Němec, G. Boudebs, R. Boidin, C. Focsa, V. Nazabal: Photosensitivity of pulsed laser deposited Ge-Sb-Se thin films, Opt. Mater. Express 5(4), 1450–1453 (2015)CrossRefGoogle Scholar
  19. X. Su, R. Wang, B. Luther-Davies, L. Wang: The dependence of photosensitivity on composition for thin films of GexAsySe1-x-y chalcogenide glasses, Appl. Phys. A 113, 575–581 (2013)CrossRefGoogle Scholar
  20. I. Voynarovych, J. Buzek, K. Palka, M. Vlcek: Spectral dependence of photoinduced optical effects in As40S60-xSex thin films, Thin Solid Films 608, 8–15 (2016)CrossRefGoogle Scholar
  21. K. Tanaka: Photo-induced phenomena in chalcogenide glasses. In: Chalcogenide Glasses: Preparation, Properties and Applications, ed. by J.-L. Adam, X. Zhang (Woodhead, Cambridge 2014) pp. 139–168CrossRefGoogle Scholar
  22. S.L. Reddy, T. Endo, G.S. Reddy: Electronic (absorption) spectra of 3d transition metal complexes. In: Advanced Aspects of Spectroscopy, ed. by M.A. Farrukh (InTech, London 2012) pp. 3–48Google Scholar
  23. M.P. Hehlen, M.G. Brik, K.W. Kramer: 50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application, J. Lumin. 136, 221–239 (2013)CrossRefGoogle Scholar
  24. R. Reisfeld: Spectroscopy of rare earth ion. In: Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology, ed. by A. Vaseashta, D. Dimova-Malinovska, J.M. Marshall (Springer, Dordrecht 2005) pp. 77–100Google Scholar
  25. V. Ter-Mikirtychev: Optical properties and optical spectroscopy of rare earth ions in solids. In: Fundamentals of Fiber Lasers and Fiber Amplifiers, ed. by V. Ter-Mikirtychev (Springer, Cham 2014)CrossRefGoogle Scholar
  26. J.G. Buenzli, S.V. Eliseeva: Basics of lanthanide photophysics. In: Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, ed. by P. Hänninen, H. Härmä (Springer, Heidelberg 2010)Google Scholar
  27. J. Heo, W.J. Chung: Rare-earth-doped chalcogenide glass for lasers and amplifiers. In: Chalcogenide Glasses: Preparation, Properties and Applications, Vol. 44, ed. by X. Adam, J.L. Zhang (Woodhead, Cambridge 2014) pp. 347–380CrossRefGoogle Scholar
  28. S. Tanabe: Optical transitions of rare earth ions for amplifiers: How the local structure works in glass, J. Non-Cryst. Solids 259, 1–9 (1999)CrossRefGoogle Scholar
  29. J. Heo: Emission and local structure of rare-earth ions in chalcogenide glasses, J. Non-Cryst. Solids 353, 1358–1363 (2007)CrossRefGoogle Scholar
  30. B.G. Potter, M.B. Sinclair: Photosensitive and rare-earth doped ceramics for optical sensing: A review, J. Electroceram. 2(4), 295–308 (1998)CrossRefGoogle Scholar
  31. S. Tanabe: Optical properties and local structure of rare-earth-doped amplifier for broadband telecommunication, J. Alloy. Compd. 408–412, 675–679 (2006)CrossRefGoogle Scholar
  32. D. Yu, J. Ballato, R.E. Riman: Temperature-dependence of multiphonon relaxation of rare-earth ions in solid-state hosts, J. Phys. Chem. C 120, 9958–9964 (2016)CrossRefGoogle Scholar
  33. A. Miguel, B. Fan, R. Balda, X. Zhang, J. Fernández, J.L. Adam: Spectroscopy and energy transfer in Nd3+/Yb3+ codoped chalcohalide glasses, J. Non-Cryst. Solids 377, 110–113 (2013)CrossRefGoogle Scholar
  34. J. Zhou, Y. Teng, S. Zhou, J. Qiu: Quantum cutting in luminescent glasses and glass ceramics, Int. J. Appl. Glas. Sci. 3(4), 299–308 (2012)CrossRefGoogle Scholar
  35. D.L. Sidebottom, M.A. Hruschka, B.G. Potter, R.K. Brow: Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses, J. Non-Cryst. Solids 222, 282 (1997)CrossRefGoogle Scholar
  36. K. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th edn. (Wiley, Hoboken 2006)Google Scholar
  37. F. Siebert, P. Hildebrandt: Theory of infrared absorption and Raman spectroscopy. In: Vibrational Spectroscopy in Life Science, ed. by F. Siebert, P. Hildebrandt (Wiley-VCH, Weinheim 2007) pp. 11–62CrossRefGoogle Scholar
  38. P.F. Bernath: Light scattering and the Raman effect. In: Spectra of Atoms and Molecules, 2nd edn., ed. by P.F. Bernath (Oxford Univ. Press, Oxford 2005) pp. 293–320Google Scholar
  39. A.K. Yadav, P. Singh: A review of the structures of oxide glasses by Raman spectroscopy, RSC Advances 5, 67583–67609 (2015)CrossRefGoogle Scholar
  40. G.N. Greaves, S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56(1), 1–166 (2007)CrossRefGoogle Scholar
  41. M. Liška, M. Lissová, A. Plško, M. Chromčiková, T. Gavenda, J. Máčhacek: Thermodynamic model and Raman spectra of ZnO–P2O5 glasses, J. Therm. Anal. Calorim. 121, 85–91 (2015)CrossRefGoogle Scholar
  42. W. Woelffel, C. Claireaux, M.J. Toplis, E. Burov, É. Barthel, A. Shukla, J. Biscaras, M.-H. Chopinet, E. Gouillart: Analysis of soda-lime glasses using non-negative matrix factor deconvolution of Raman spectra, J. Non-Cryst. Solids 428, 121–131 (2015)CrossRefGoogle Scholar
  43. R. Zhang, J. Ren, H. Jain, Y. Liu, Z. Xing, G. Chen: In-situ Raman spectroscopy study of photoinduced structural changes in Ge-rich chalcogenide films, J. Am. Ceram. Soc. 97(5), 1421–1424 (2014)CrossRefGoogle Scholar
  44. C. Mendoza, S. Peuget, O. Bouty, R. Caraballo, C. Jegou: Simplified nuclear glasses structure behaviour under various irradiation conditions: A Raman spectroscopy study, Procedia Chem. 7, 581–586 (2012)CrossRefGoogle Scholar
  45. G.S. Henderson, D.R. Neuville, B. Cochain, L. Cormier: The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study, J. Non-Cryst. Solids 355, 468–474 (2009)CrossRefGoogle Scholar
  46. H. Aguiar, J. Serra, P. González, B. León: Structural study of sol–gel silicate glasses by IR and Raman spectroscopies, J. Non-Cryst. Solids 355(8), 475–480 (2009)CrossRefGoogle Scholar
  47. J. Kieffer: Brillouin light scattering. In: Modern Glass Characterization, ed. by M. Affatigato (Wiley, Hoboken 2015) pp. 107–157Google Scholar
  48. C. Sonneville, D. De Ligny, A. Mermet, B. Champagnon, C. Martinet, G.H. Henderson, T. Deschamps, E. Barthel: In situ Brillouin study of sodium alumino silicate glasses under pressure, J. Chem. Phys. 139, 074501 (2013)CrossRefGoogle Scholar
  49. S. Chakraborty, A.K. Arora, V. Sivasubramanian, P.S.R. Krishna: Anomalous Brillouin shift in lead-tellurite glass above glass transition. In: AIP Conference Proceedings, Vol. 1512 (2013) pp. 574–576Google Scholar
  50. P. Voudouris, N. Gomopoulos, A. Le Grand, N. Hadjichristidis, G. Floudas, M.D. Ediger, G. Fytas: Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition? Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?, J. Chem. Phys. 132, 074906 (2013)CrossRefGoogle Scholar
  51. M. Naji, F. Piazza, G. Guimbretière: Heating rate effect on the activation of viscoelastic relaxation in silicate glasses, Phys. Procedia 48, 125–131 (2013)CrossRefGoogle Scholar
  52. M.M. Smedskjaer, L. Huang, G. Scannell, J.C. Mauro: Elastic interpretation of the glass transition in aluminosilicate liquids, Phys. Rev. B 85, 144203 (2012)CrossRefGoogle Scholar
  53. M. Guerette, C.R. Kurkjian, S. Semjonov, L. Huang: Nonlinear elasticity of silica glass, J. Am. Ceram. Soc. 99(3), 841–848 (2016)CrossRefGoogle Scholar
  54. J. Sole, L. Bausa, D. Jaque: An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, Hoboken 2005)CrossRefGoogle Scholar
  55. J.M. Lerner, A. Thevenon: Optics of Spectroscopy: A Tutorial (Horiba Scientific, Kyoto 2002)Google Scholar
  56. G. Rieke: Detection of Light: From the Ultraviolet to the Submillimeter, 2nd edn. (Cambridge Univ. Press, Cambridge 2003)Google Scholar
  57. P.R. Griffiths, J.A. De Haseth, J.D. Winefordner: Fourier Transform Infrared Spectrometry, 2nd edn. (Wiley, Hoboken 2007)CrossRefGoogle Scholar
  58. J.R. Sandercock: Brillouin scattering study of SbSI using a double passed stabilised scanning interferometer, Opt. Commun. 2, 73–76 (1970)CrossRefGoogle Scholar
  59. M. Guerette, L. Huang: A simple and convenient set-up for high-temperature Brillouin light, J. Phys. D. Appl. Phys. 45, 275302 (2012)CrossRefGoogle Scholar
  60. K. Simmons-Potter, J.H. Simmons: Modeling of absorption data complicated by Fabry-Pérot interference in germanosilicate thin-film waveguides, J. Opt. Soc. Am. B 13(2), 268–272 (1996)CrossRefGoogle Scholar
  61. R. Swanepoel: Determining refractive index and thickness of thin films from wavelength measurements only, J. Opt. Soc. Am. A 2(8), 1339–1343 (1985)CrossRefGoogle Scholar
  62. W.C. Wang, J. Yuan, X.Y. Liu, D.D. Chen, Q.Y. Zhang: Spectroscopic properties and energy transfer parameters of Yb3+/Tm3+ co-doped fluorogermanate glasses, J. Non-Cryst. Solids 431, 154–158 (2016)CrossRefGoogle Scholar
  63. D. Ramachari, L.R. Moorthy, C.K. Jayasankar: Phonon sideband spectrum and vibrational analysis of Eu3+-doped niobium oxyfluorosilicate glass, J. Lumin. 143, 674–679 (2013)CrossRefGoogle Scholar
  64. D.L. Sidebottom, M.A. Hruschka, B.G. Potter, R.K. Brow: Increased radiative lifetime of rare earth-doped zinc oxyhalide tellurite glasses, J. Appl. Phys. 84, 509 (1998)CrossRefGoogle Scholar
  65. M. de Oliveira Jr, T. Uesbeck, T.S. Gonçalves, C.J. Magon, P.S. Pizani, A.S.S. de Camargo, H. Eckert: Network structure and rare-earth ion local environments in fluoride phosphate photonic glasses studied by solid-state NMR and electron paramagnetic resonance spectroscopies, J. Phys. Chem. C 119, 24574–24587 (2015)CrossRefGoogle Scholar
  66. R.G. Brereton: Chemometrics: Data Analysis for the Laboratory and Chemical Plant, Vol. 8 (Wiley, Chichester 2003)CrossRefGoogle Scholar
  67. M.H. Brooker, O. Faurskov Nielsen, E. Praestgaard: Assessment of correction procedures for reduction of Raman spectra, J. Raman Spectrosc. 19, 71–78 (1988)CrossRefGoogle Scholar
  68. R. Tauler, A. de Juan: Multivariate curve resolution. In: Practical Guide to Chemometrics, 2nd edn., ed. by G. Paul (CRC, Boca Raton 2006)Google Scholar
  69. E. Černoškova, J. Holubová, B. Bureau, C. Roiland, V. Nazabal, R. Todorov, Z. Černošek: Thermoanalytical properties and structure of (As2Se3)100-x(Sb2Se3)x glasses by Raman and 77Se MAS NMR using a multivariate curve resolution approach, J. Non-Cryst. Solids 432, 426–431 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science & EngineeringUniversity of ArizonaTucson, AZUSA

Personalised recommendations