Advertisement

Thermal Analysis of Glass

  • Erick KoontzEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter explores the use of thermal analysis in the characterization of glassy materials. Common characterization methods are described as well as a basic overview of the techniques mentioned. Differential scanning calorimetry, thermomechanical analysis, and measurement of glass viscosity are among the primary topics covered. The inner workings of each of the instruments in question is touched upon, along with general calibration procedures and best practices for measurement. Where appropriate, basic material science principles are used to improve the readers' understanding of the reason for a measurement or particular method. While outlining the most important instruments in the thermal analysis of glasses, key glass properties such as glass transition temperature, crystallization temperature, melting temperature, and softening point are explained. Finally, a discussion of glass viscosity necessary for an understanding of the most common viscosity measurement instruments and methods is included.

References

  1. C. Meade, R. Hemley, H. Mao: High-pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69(9), 1387–1390 (1992)CrossRefGoogle Scholar
  2. J.H. Gibbs, E.A. DiMarzio: Nature of the glass transition and the glassy state, J. Chem. Phys. 28, 373–383 (1958)CrossRefGoogle Scholar
  3. C.A. Angell: The glass transition, Solid State Mater. Sci. 1, 578–585 (1996)CrossRefGoogle Scholar
  4. U. Fotheringham, R. Muller, K. Erb, A. Baltes, F. Siebers, E. Weiss, R. Dudek: Evaluation of the calorimetric glass transition of glasses and glass ceramics with respect to structural relaxation and dimensional stability, Thermochim. Acta 461, 72–81 (2007)CrossRefGoogle Scholar
  5. A. Bestul, S. Chang: Excess entropy at glass transformation, J. Chem. Phys. 40, 3731–3733 (1964)CrossRefGoogle Scholar
  6. M. Goldstein: Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728–3739 (1969)CrossRefGoogle Scholar
  7. R.J. Speedy: Kauzmann's paradox and the glass transition, Biophys. Chem. 105, 411–420 (2003)CrossRefGoogle Scholar
  8. R.B. Cassel: High Heating Rate DSC (TA Instruments, New Castle 2002), http://www.tainstruments.com/pdf/literature/TA297.pdfGoogle Scholar
  9. L.C. Thomas: Making Accurate DSC and MDSC Specific Heat Capacity Measurements with the Q1000 Tzero DSC (TA Instruments, New Castle 2002)Google Scholar
  10. J. Mauro, R. Loucks, P. Gupta: Fictive temperature and the glassy state, J. Am. Ceram. Soc. 92, 75–86 (2009)CrossRefGoogle Scholar
  11. E. Koontz: Characterization of Structural Relaxation in Inorganic Glasses Using Length Dilatometry, Ph.D. Thesis (Clemson Univ., Clemson 2015)Google Scholar
  12. C. Moynihan, A.J. Easteal, J.T.J. Wilder: Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem. 78(26), 2673–2677 (1974)CrossRefGoogle Scholar
  13. E. Marseglia, E. Davis: Crystallization of amorphous selenium and As0.005Se0.995, J. Non-Cryst. Solids 50, 13–21 (1982)CrossRefGoogle Scholar
  14. N.P. Bansal, R.H. Doremus, A.J. Bruce, C. Moynihan: Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry, J. Am. Ceram. Soc. 66(4), 233–238 (1983)CrossRefGoogle Scholar
  15. J. Massera, J. Remond, J.D. Musgraves, M.J. Davis, S. Misture, L. Petit, K. Richardson: Nucleation and growth behavior of glasses in the TeO2–Bi2O3–ZnO glass system, J. Non-Cryst. Solids 356, 2947–2955 (2010)CrossRefGoogle Scholar
  16. A. Marotta, A. Buri, F. Branda: Nucleation in glass and differential thermal analysis, J. Mater. Sci. 16, 341 (1981)CrossRefGoogle Scholar
  17. C. Ray, K. Ransinghe, D. Day: Determining crystal growth TRAte-type of curves in glasses by differential thermal analysis, Solid State Sci. 3, 727 (2001)CrossRefGoogle Scholar
  18. H. Yinnon, D. Uhlmann: Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, Part I: Theory, J. Non-Cryst. Solids 54, 253–275 (1983)CrossRefGoogle Scholar
  19. J. Holubova, Z. Černošek, E. Cernoskova, M. Liska: Isothermal structural relaxation: temperature and time dependencies of relaxation parameters, J. Non-Cryst. Solids 326, 135–140 (2003)CrossRefGoogle Scholar
  20. L.C. Thomas: Why Modulated DSC?; An Overview and Summary of Advantages and Disadvantages Relative to Traditional DSC (TA Instruments, New Castle 2005)Google Scholar
  21. J. Schawe, T. Heutter, C. Heitz, I. Alig, D. Lellinger: Stochastic temperature modulation: A new technique in temperature-modulated DSC, Thermochim. Acta 446, 147–155 (2006)CrossRefGoogle Scholar
  22. S.O. Kasap, T. Wagner, K. Maeda: Heat capacity and structure of chalcogenide glasses by modulated differential scanning calorimetry (MDSC), Jpn. Soc. Appl. Phys. 35, 1116–1120 (1996)CrossRefGoogle Scholar
  23. S. Kasap, D. Tonchev, T. Wagner: Heat capacity and the structure of chalcogenide glasses studied by temperature-modulated differential scanning calorimetry, J. Mater. Sci. Lett. 17, 1809–1811 (1998)CrossRefGoogle Scholar
  24. Instrumentation Today: Linear Voltage Differential Transformer, Instrumentation Today, 19 July 2011.  http://www.instrumentationtoday.com/linear-voltage-differential-transformer-lvdt/2011/07/
  25. E. Koontz, V. Blouin, P. Wachtel, J.D. Musgraves, K. Richardson: Prony series spectra of structural relaxation in N-BK7 for finite element modeling, J. Phys. Chem. A 116(50), 12198–12205 (2012)CrossRefGoogle Scholar
  26. J. Malek: Structural relaxation of As2S3 glass by length dilatometry, J. Non-Cryst. Solids 235, 527–533 (1998)CrossRefGoogle Scholar
  27. A.Y. Yi, A. Jain: Compression Molding of Aspherical Glass Lenses – A Combined Experimental and Numerical Analysis, J. Am. Ceram. Soc. 88, 579–586 (2005)CrossRefGoogle Scholar
  28. T. Zhou, J. Yan, T. Kuriyagawa: Evaluating the visoelastic properties of glass above transition temperature for numerical modeling of lens molding process, Proc. SPIE 6624, 662403 (2008)CrossRefGoogle Scholar
  29. S. Carmi, S. Havlin, C. Song, K. Wang, H.A. Makse: Energy-landscape network approach to the glass transition, J. Phys. A: Math. Theor. 42, 105101 (2009)CrossRefGoogle Scholar
  30. R. Gy, L. Duffrene, M. Labrot: New insights into the viscoelasticity of glass, J. Non-Cryst. Solids 175, 103–117 (1994)CrossRefGoogle Scholar
  31. K.L. Ngai, A.K. Rajaggopal, R. Rendell: Models of Kohlrausch relaxations, IEEE Trans. Electr. Insulation 21, 313–318 (1986)CrossRefGoogle Scholar
  32. M. Potuzak, R.C. Welch, J.C. Mauro: Topological origin of stretched exponential relaxation in glass, J. Chem. Phys. 135, 214502 (2011)CrossRefGoogle Scholar
  33. M.A. Schiavon, G.D. Soraru, V.P. Yoshida: Synthesis of polycyclic silazane network and it's evolution to silicon carbonitride glass, J. Non-Cryst. Solids 304, 76–83 (2002)CrossRefGoogle Scholar
  34. ASTM Standard C1351M-96: Standard Test Method for Measurement of Viscosity of Glass Between 104 Pa·s and 108 Pa·s by Viscous Compression of a Solid Right Cylinder (ASTM International, West Conshohocken 2012)Google Scholar
  35. E. Fontana: A versatile parallel-plate viscometer for glass viscosity measurements to 1000 °C, Bull. Am. Ceram. Soc. 49(6), 594–597 (1970)Google Scholar
  36. ASTM Standard C1350M-96: Standard Test Method for Measurement of Viscosity of Glass Between Softening Point and Annealing Range (Approximately 108 Pa·s to Approximately 1013 Pa·s) by Beam Bending (ASTM International, West Conshohocken 2013)Google Scholar
  37. ISO 7884-3: Glass Viscosity and Viscometric Fixed Points, Part 3: Determination of Viscosity by Fibre Elongation Viscometer (International Organization for Standardization, Geneva 1998)Google Scholar
  38. ASTM Standard C338-93: Standard Test Method for Softening Point of Glass (ASTM International, West Conshohocken 2003)Google Scholar
  39. R. Douglas, W.L. Armstrong, J.P. Edward, D. Hall: A Penetration Viscometer, Glass Technol. 6, 52–55 (1965)Google Scholar
  40. R. Brueckner, G. Demharter: Systematic investigation of the use of penetration viscometers, Glass Technol. 48(1), 12–18 (1975)Google Scholar
  41. TA Instruments: TA Thermomechanical Anaysis, http://www.tainstruments.com/wp-content/uploads/BROCH-TMA-2014-EN.pdf (2006)
  42. G.W. Scherer: Editorial comments on a paper by Gordon S. Fulcher, J. Am. Ceram. Soc. 75, 1060–1062 (1992)CrossRefGoogle Scholar
  43. G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 1043 (1925)Google Scholar
  44. J.D. Musgraves, P. Wachtel, S. Novak, J. Wilkinson, K. Richardson: Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system, J. Appl. Phys. 110, 06503 (2011)CrossRefGoogle Scholar
  45. C. Angell: Relaxation in liquids, polymers and plastic crystals – Strong fragile patterns and problems, J. Non-Cryst. Solids 131-133, 13–31 (1991)CrossRefGoogle Scholar
  46. J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)CrossRefGoogle Scholar
  47. I. Avramov, A. Milchev: Effect of disorder on diffusion and viscosity of condensed systems, J. Non-Cryst. Solids 104, 253–260 (1988)CrossRefGoogle Scholar
  48. L.W. Wang, H.-J. Fecht: A kinetic model for liquids: Relaxation in liquids, origin of the Vogel-Tammann-Fulcher equation, and the essence of fragility, J. Appl. Phys. 104, 113538–113538-10 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fisba LLC.Tucson, AZUSA

Personalised recommendations