Advertisement

Hybrid Glasses: From Metal Organic Frameworks and Co-ordination Polymers to Hybrid Organic Inorganic Perovskites

  • G. Neville GreavesEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

In this review, we introduce the structural variety of glasses derived from metal organic frameworks, coordination polymers, and hybrid perovskites, in each case stressing the atomic building blocks from which non-crystalline networks are assembled. We describe many ways of producing hybrid glasses, which, irrespective of their novelty, call on an interestingly wide variety of glass-forming methods, from standard melt-quenching to thermal and pressure induced amorphization and ball milling. These raise issues currently fundamental to glass science, not least the ubiquitous influence of mechanical stability on melting, temperature and pressure-induced amorphization, and glass-forming ability. Characterizing hybrid glasses calls on the full range of techniques available, ranging from pair distribution function analysis, neutron and synchrotron radiation methods, differential scanning calorimetry, Raman spectroscopy, to atomistic computer simulation. By considering the different groups of organic–inorganic glass formers together, we are able to throw light on the role of crystalline compressibility on the reversibility of amorphization and on the demarcation between the brittleness and ductility of melt-quenched glasses. Furthermore, in looking at the structural and dynamic properties of hybrid glasses formed from hybrid zeolitic frameworks to perovskites, and the liquids they are condensed from, we anticipate how compositions can be extended and ways in which the physics of this exciting new branch of glass science can be further developed.

Notes

Acknowledgements

Stimulating discussions over time with Yuanzheng Yue, Omar M. Yaghi, C. Austen Angell, Alex Navrotsky, A. Lindsey Greer, Lothar Wondraczek, Gopinathan Sankar, Sabiasachi Sen, Tanguy Rouxel, Paul F. McMillan, Daniel R. Neuville, Gregory Chass, Wim Bras, and C. Richard Catlow are all gratefully acknowledged. The following institutions are also thanked for their support: Wuhan University of Technology (Strategic Scientist), Aberystwyth University (Research Professorship), University College London (Honorary Professor in Chemistry), University of Cambridge (Distinguished Research Fellow) and Sidney Sussex College, Cambridge (Research Fellowship). The author is also grateful to the oncologist Elin Jones and her dedicated and caring chemotherapy team at Bronglais Hospital, Aberystwyth, UK. He also acknowledges the infinite patience and unstinting support of his wife Jenny.

References

  1. T.D. Bennett, J.-C. Tan, Y. Yue, E. Baxter, D. Ducati, N.J. Terril, H.H.-M. Yeung, Z. Zhou, W. Chen, S. Henke, A.K. Cheetham, G.N. Greaves: Hybrid glasses from strong and fragile metal-organic framework liquids, Nat. Commun. 6, 8079 (2015)CrossRefGoogle Scholar
  2. T.D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao, G.N. Greaves, T. Richards, G.I. Lampronti, S.A.T. Redfern, F. Blanc, O.K. Farha, J.T. Hupp, A.K. Cheetham, D.A. Keen: Melt-quenched glasses of metal–organic frameworks, J. Am. Chem. Soc. 138, 3484–3492 (2016)CrossRefGoogle Scholar
  3. Y. Zhao, S.-Y. Lee, N. Becknell, O.M. Yaghi, C.A. Angell: Nanoporous transparent MOF glasses with accessible internal surface, J. Am. Chem. Soc. 138, 10818–10821 (2016)CrossRefGoogle Scholar
  4. O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim: Reticular synthesis and the design of new materials, Nature 423, 705–714 (2003)CrossRefGoogle Scholar
  5. G. Férey: Hybrid porous solids: Past, present and future, Chem. Soc. Rev. 37, 191–214 (2008)CrossRefGoogle Scholar
  6. J.C. Tan, A.K. Cheetham: Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure-property relationships, Chem. Soc. Rev. 40, 1059–1080 (2011)CrossRefGoogle Scholar
  7. P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney, P.A. Wood, S.C. Ward, D. Fairen-Jimenez: Development of a Cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future, Chem. Mater. 29, 2618–2625 (2017)CrossRefGoogle Scholar
  8. S. Brunauer, P.H. Emmett, E. Tellaer: BET internal surface areas calculated following adsorption of gases in multimolecular layered MQGs, J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  9. H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi: The chemistry and applications of metal-organic frameworks, Science 341, 123044 (2013)CrossRefGoogle Scholar
  10. A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O'Keefe, O.M. Yaghi: Synthesis, structure and carbon dioxide capture of zeolitic imidazolate frameworks, Acc. Chem. Res. 43, 58–67 (2009)CrossRefGoogle Scholar
  11. J. Čejka, R.E. Morris, P. Nachtigall (Eds.): Zeolites in Catalysis: Properties and Applications (Royal Society of Chemistry, London 2017)Google Scholar
  12. C. Baerlocher, L.B. McCuster, D.H. Olson: Atlas of Zeolite Framework Types, 6th edn. (Elsevier, Amsterdam 2007)Google Scholar
  13. B. Sels, L. Kustov: Zeolites and Zeolite-Like Materials, 1st edn. (Elsevier, Amsterdam 2016)Google Scholar
  14. L. Wondraczek, Z. Pan, T. Palenta, A. Erlebach, S.T. Misture, M. Sierka, M. Micoulaut, U. Hoppe, J. Deubener, G.N. Greaves: Kinetics of decelerated melting, Adv. Sci. 5(5), 1700850 (2018)CrossRefGoogle Scholar
  15. G.N. Greaves, F. Meneau, A. Sapelkin, L.M. Colyer, I.A. Gwynn, S. Wade, G. Sankar: Rheology of collapsing zeolites amorphized by temperature and pressure, Nat. Mater. 2, 622–629 (2003)CrossRefGoogle Scholar
  16. G.N. Greaves, F. Meneau, F. Kargl, D. Ward, P. Holliman, F. Albergamo: Zeolite collapse and polyamorphism, J. Phys. Condens. Matter 19, 415102 (2007)CrossRefGoogle Scholar
  17. J. Haines, C. Levelut, A. Isambert, P. Hébert, S. Kohara, D.A. Keen, T. Hammouda, D. Andrault: Topologically ordered amorphous silica obtained from the collapsed siliceous zeoliste, silicalite-1-F: A step toward “perfect” glasses, J. Am. Chem. Soc. 131, 12333–12338 (2009)CrossRefGoogle Scholar
  18. L. Wondraczek, G. Gao, D. Möncke, T. Selvam, A. Kuhnt, W. Schweiger, D. Palles, E.I. Kamitsos: Thermal collapse of SAPO-34 molecular sieve towards a perfect glass, J. Non-Cryst. Solids 360, 36–40 (2013)CrossRefGoogle Scholar
  19. T. Palenta, S. Fuhrmann, G.N. Greaves, W. Schwieger, L. Wondraczek: Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass, J. Chem. Phys. 142, 084503 (2015)CrossRefGoogle Scholar
  20. S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M.P. Suh, J. Reedijk: Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013), Pure Appl. Chem. 85, 1715–1724 (2013)CrossRefGoogle Scholar
  21. D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa: Inherent proton conduction in a 2-D coordination network, J. Am. Chem. Soc. 134, 12780–12785 (2012)CrossRefGoogle Scholar
  22. D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa: Reversible solid-to-liquid phase transition of coordination polymer crystals, J. Am. Chem. Soc. 137, 864–870 (2014)CrossRefGoogle Scholar
  23. W. Chen, S. Horike, D. Umeyama, N. Ogiwara, T. Itakura, C. Tassel, Y. Goto, H. Kageyama, S. Kitagawa: Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility, Angew. Chem. Int. Ed. 55, 5195–5200 (2016)CrossRefGoogle Scholar
  24. H. Ohtsu, T.D. Bennett, T. Kojima, D.A. Keen, Y. Niwa, M. Kawano: Amorphous–amorphous transition in a porous coordination polymer, Chem. Commun. 53, 7060–7063 (2017)CrossRefGoogle Scholar
  25. W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham: Chemically diverse and multifunctional hybrid organic–inorganic perovskites, Nat. Rev. Mater. 2(16099), 1–18 (2016)Google Scholar
  26. D. Weber: CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur, Z. Naturforsch. B 33, 1443–1445 (1978)CrossRefGoogle Scholar
  27. M. Liu, M.B. Johnston, H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  28. S. Sasaki, C. Prewitt, J.D. Bass: Orthorhombic perovskite CaTiO3 and CdTiO3: Structure and space group, Acta Crystallogr. C 43, 1668–1674 (1987)CrossRefGoogle Scholar
  29. D.B. Mitzi: Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M \(=\) Ge, Sn, Pb), Chem. Mater. 29, 6200–6204 (1996)Google Scholar
  30. Y. Lee, D.B. Mitzi, P.W. Barnes, T. Vogt: Pressure-induced phase transitions and templating effect in three-dimensional organic–inorganic hybrid perovskites, Phys. Rev. B 68, 020103 (2003)CrossRefGoogle Scholar
  31. Y. Wang, X. Lu, W. Yang, T. Wen, L. Yang, X. Ren, L. Wang, Z. Lin, Y. Zhao: Pressure-induced phase transformation, reversible amorphization and anomalous visible light response in organolead bromide perovskite, J. Am. Chem. Soc. 137, 11144–11149 (2015)CrossRefGoogle Scholar
  32. X. Lü, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo, H. Chen, L. Yang, J.S. Smith, W. Yang, Y. Zhao, H. Xu, M.G. Kanatzidis, Q. Jia: Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization, Adv. Mater. 28, 8663–8668 (2016)CrossRefGoogle Scholar
  33. T. Ou, J. Yan, C. Xiao, W. Shen, C. Liu, X. Liu, Y. Han, Y. Ma, C. Gao: Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites, Nanoscale 8, 11426–11431 (2016)CrossRefGoogle Scholar
  34. F. Capitani, C. Marini, S. Caramazza, P. Postorino, G. Garbarino, M. Hanfland, A. Pisanu, P. Quadrelli, L. Malavasi: High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite, J. Appl. Phys. 119, 185901 (2016)CrossRefGoogle Scholar
  35. G.N. Greaves, S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56, 1–166 (2007)CrossRefGoogle Scholar
  36. H.E. Stanley (Ed.): Liquid Polyamorphism, Advances in Chemical Physics, Vol. 152 (Wiley, Hoboken 2013)Google Scholar
  37. W.H. Zachariasen: The atomic arrangement in glass, J. Am. Chem. Soc. 54, 3841–3851 (1932)CrossRefGoogle Scholar
  38. P. Adhikari, M. Xiong, N. Li, X. Zhao, P. Rulis, W.-Y. Ching: Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (aZIF), J. Phys. Chem. C 120, 15362–15368 (2016)CrossRefGoogle Scholar
  39. T.D. Bennett, A.L. Goodwin, M.T. Dove, D.A. Keen, M.G. Tucker, E.R. Barney, A.K. Soper, E.G. Bithell, J.-C. Tan, A.K. Cheetham: Structure and properties of an amorphous metal-organic framework, Phys. Rev. Lett. 104, 115503 (2010)CrossRefGoogle Scholar
  40. T.D. Bennett, D.A. Keen, J.-C. Tan, E.R. Barney, A.L. Goodwin, A.K. Cheetham: Thermal amorphization of zeolitic imidazolate frameworks, Angew. Chem. Int. Ed. 50, 3067–3071 (2011)CrossRefGoogle Scholar
  41. G.N. Greaves, K.L. Ngai: Reconciling ionic transport properties with atomic structure in oxide glasses, Phys. Rev. B 52, 6358–6380 (1995)CrossRefGoogle Scholar
  42. C. LeLosq, D.R. Neuville, W. Chen, P. Florian, D. Massiot, Z. Zhou, G.N. Greaves: Percolation channels: A universal idea to describe the atomic structure and dynamics of glasses and melts, Sci. Rep. 7, 16490 (2017)CrossRefGoogle Scholar
  43. H. Liu, R. Pan, W. Chen, Z. Shan, A. Qiao, J.W.E. Drewitt, L. Hennet, S. Jahn, D.P. Langstaff, H. Tao, G.N. Greaves, Y. Yue: From Molten calcium aluminates through phase transitions to cement phases, Nat. Commun., under review (2019)Google Scholar
  44. U. Ali, K.J.B.A. Karim, N.A. Buang: A review of the properties and applications of poly(methyl methacrylate) (PMMA), Polym. Rev. 55, 678–705 (2015)CrossRefGoogle Scholar
  45. J.M. Granadino-Roldán, N. Vukmirović, M. Fernández-Gómez, L.-W. Wang: The role of disorder on the electronic structure of conjugated polymers. The case of poly-2,5-bis(phenylethynyl)-1,3,4-thiadiazole, Phys. Chem. Chem. Phys. 13, 14500–14509 (2011)CrossRefGoogle Scholar
  46. A.W. Thornton, K.E. Jelfs, K. Konstas, C.M. Doherty, A.J. Hill, A.K. Cheetham, T.D. Bennett: Porosity in metal-organic framework glasses, Chem. Commun. 52, 3750–3753 (2016)CrossRefGoogle Scholar
  47. M. Reben, E. Golis, J. Filipecki, M. Sitarz, K. Kotynia, P. Jeleń, I. Grelowska: Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies, Spectrochim. Acta A 129, 643–648 (2014)CrossRefGoogle Scholar
  48. M. Zanatta, G. Baldi, R.S. Brusa, W. Egger, A. Fontana, E. Gilioli, S. Mariazzi, G. Monaco, L. Ravelli, F. Sacchetti: Mapping the Structure of a Glass Through its Voids, Heinz Maier-Leibniz Zentrum Applications Report (Heinz Maier-Leibniz Zentrum, Munich 2017)Google Scholar
  49. A. Qiao, T.D. Bennett, H. Tao, A. Krajnc, G. Mali, C.M. Doherty, A.W. Thornton, J.C. Mauro, G.N. Greaves, Y. Yue: A metal-organic framework with ultrahigh glass-forming ability, Sci. Adv. 4, eaao6827 (2018)CrossRefGoogle Scholar
  50. W. Ching: Microscopic calculation of localized electron states in an intrinsic glass, Phys. Rev. Lett. 46, 607–610 (1981)CrossRefGoogle Scholar
  51. R. Gaillac, P. Pullumbi, K.A. Beyer, K.W. Chapman, D.A. Keen, T.D. Bennett, F.X. Coudert: Liquid metal–organic frameworks, Nat. Mater. 16, 1149–1154 (2017)CrossRefGoogle Scholar
  52. R.L. McGreevy: Reverse Monte Carlo modelling, J. Phys. Condens. Matter 13, R877–R913 (2001)CrossRefGoogle Scholar
  53. W. Chen: A Simulation Study of the Formation of Tetrahedral Inorganic and Hybrid Glasses, Ph.D. Thesis (Aberystwyth University, Aberystwyth 2017)Google Scholar
  54. J. Du, A.N. Cormack: Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces, J. Am. Ceram. Soc. 88, 2532–2539 (2005)CrossRefGoogle Scholar
  55. M. Gao, A.J. Misquitta, L.H.N. Rimmer, M.T. Dove: Molecular dynamics simulation study of various zeolitic imidazolate framework structures, Dalton Trans. 45, 4289–4302 (2016)CrossRefGoogle Scholar
  56. J.C. Tan, B. Civalleri, A. Erba, E. Albanese: Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs ZIF-zni, CrystEngComm 17, 375–382 (2015)CrossRefGoogle Scholar
  57. M. Xiong, N. Li, G.N. Greaves, Y. Yue, X. Zhao: Quantum chemical calculations to elucidate the electronic and elastic properties of topologically equivalent metal organic frameworks, under review (2019)Google Scholar
  58. J.-C. Tan, T.D. Bennett, A.K. Cheetham: Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A. 107, 9938–9943 (2010)CrossRefGoogle Scholar
  59. J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T.D. Bennett, C. Mellot-Draznieks, C.M. Zicovich-Wilson, A.K. Cheetham: Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework, Phys. Rev. Lett. 108, 095502 (2012)CrossRefGoogle Scholar
  60. G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel: Poisson's ratio and modern materials, Nat. Mater. 10, 823–837 (2011)CrossRefGoogle Scholar
  61. C. Landron, L. Hennet, T.E. Jenkins, G.N. Greaves, J.P. Coutures, A.K. Soper: Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement, Phys. Rev. Lett. 86, 4839–4842 (2001)CrossRefGoogle Scholar
  62. L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara: Joint diffraction and modeling approach to the structure of liquid alumina, Phys. Rev. B 87(2), 024201 (2013)CrossRefGoogle Scholar
  63. G. Adam, J.H.J. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, Chem. Phys. 43, 139–146 (1965)Google Scholar
  64. Y. Yue: Characteristic temperatures of enthalpy relaxation in glass, J. Non-Cryst. Solids 354, 1112–1118 (2008)CrossRefGoogle Scholar
  65. J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. U.S.A. 106, 19780–19784 (2009)CrossRefGoogle Scholar
  66. R. Böhmer, C.A. Angell: Local and global relaxations in glass-forming materials. In: Disorder Effects on Relaxational Processes, ed. by R. Richert, A. Blumen (Springer, Berlin 1994) pp. 11–54CrossRefGoogle Scholar
  67. C.A. Angell: Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13–31 (1991)CrossRefGoogle Scholar
  68. C.A. Angell: Thermodynamics: Liquid landscape, Nature 393, 521–524 (1998)CrossRefGoogle Scholar
  69. L. Hennet, I. Pozdnyakova, A. Bytchkov, D.L. Price, G.N. Greaves, M. Wilding, S. Fearn: Development of structural order during supercooling of a fragile melt, J. Chem. Phys. 126, 074906 (2007)CrossRefGoogle Scholar
  70. W. Gotze, L. Sjogren: Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55, 241–376 (1992)CrossRefGoogle Scholar
  71. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.H. Chen, H.E. Stanley: Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. U.S.A. 107, 22457–22462 (2010)CrossRefGoogle Scholar
  72. W. Kauzmann: The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rep 43, 219–256 (1948)CrossRefGoogle Scholar
  73. C.A. Angell, C.T. Moynihan, M. Hemmati: ‘Strong' and ‘superstrong' liquids, and an approach to the perfect glass state via phase transition, J. Non-Cryst. Solids 274, 319–331 (2000)CrossRefGoogle Scholar
  74. J. Zhao, S.L. Simon, G.B. McKenna: Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems, Nat. Commun. 4, 1783 (2013)CrossRefGoogle Scholar
  75. M.D. Ediger, P. Harrowell: Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137, 080901 (2012)CrossRefGoogle Scholar
  76. S.V. Ketov, Y.H. Sun, S. Nachum, A. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer: Rejuvination of metallics glasses by non-affine thermal strain, Nature 524, 200–203 (2015)CrossRefGoogle Scholar
  77. A.L. Greer: New horizons for glass formation and stability, Nat. Mater. 14, 542–546 (2015)CrossRefGoogle Scholar
  78. A. Navrotsky, Z.R. Tian: Systematics in the enthalpies of formation of anhydrous aluminosilicate zeolites, glasses, and dense phases, Chem. Eur. J. 7, 769–774 (2001)CrossRefGoogle Scholar
  79. K.W. Chapman, G.J. Halder, P.J. Chupas: Pressure-induced amorphization and porosity modification in a metal-organic framework, J. Am. Chem. Soc. 131, 17546–17547 (2009)CrossRefGoogle Scholar
  80. T.D. Bennett, P. Simoncic, S.A. Moggach, F. Gozzo, P. Macchi, D.A. Keen, J.-C. Tan, A.K. Cheetham: Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4), Chem. Commun. 47, 7983–7985 (2011)CrossRefGoogle Scholar
  81. D. Umeyama, S. Horike, C. Tassel, H. Kageyama, Y. Higo, K. Hagi, N. Ogiwara, S. Kitagawa: Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity, APL Materials 2, 124401 (2014)CrossRefGoogle Scholar
  82. S. Cao, T.D. Bennett, D.A. Keen, A.L. Goodwin, A.K. Cheetham: Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling, Chem. Commun. 48, 7805–7780 (2012)CrossRefGoogle Scholar
  83. E.F. Baxter, T.D. Bennett, A.B. Cairns, N.J. Brownbill, A.L. Goodwin, D.A. Keen, P.A. Chater, F. Blanc, A.K. Cheetham: A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball milling, Dalton Trans. 45, 4258–4268 (2016)CrossRefGoogle Scholar
  84. D. Prochowicz, M. Franckevičius, A.M. Cieślak, S.M. Zakeeruddin, M. Grätzel, J. Lewiński: Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: Characterization and the corresponding solar cell efficiency, J. Mater. Chem. A 3, 20772–20777 (2015)CrossRefGoogle Scholar
  85. C. Chakravarty, P.G. Debenedetti, F.H. Stillinger: Lindemann measures for the solid–liquid phase transition, J. Chem. Phys. 126, 204508 (2007)CrossRefGoogle Scholar
  86. Q.S. Meiit, K. Lu: Melting and superheating of crystalline solids: From bulk to nanocrystals, Prog. Mater. Sci. 52, 1175–1262 (2007)CrossRefGoogle Scholar
  87. F.A. Lindemann: The calculation of molecular natural frequencies, Phys. Z. 11, 609–612 (1910)Google Scholar
  88. J.J. Gilvarry: The Lindemann and Grüneisen laws, Phys. Rev. 102, 308–316 (1956)CrossRefGoogle Scholar
  89. J.-P. Poirier: Introduction to the Physics of the Earth's Interior, 2nd edn. (Cambridge Univ. Press, Cambridge 2000)CrossRefGoogle Scholar
  90. S.S. Nagarkar, S. Horike, T. Itakura, B. Le Ouay, A. Demessence, M. Tsujimoto, S. Kitagawa: Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal, Angew. Chem. Int. Ed. 56, 4976–4981 (2017)CrossRefGoogle Scholar
  91. A. Samanta, M.E. Tuckerman, T.-Q. Yu: W.E: Microscopic mechanisms of equilibrium melting of a solid, Science 346, 729–732 (2014)CrossRefGoogle Scholar
  92. G.N. Greaves, F. Meneau, O. Majérus, D. Jones, J. Taylor: Identifying the vibrations that destabilize crystals and characterize the glassy state, Science 308, 1299–1302 (2005)CrossRefGoogle Scholar
  93. M.R. Ryder, T.D. Bennett, C.S. Kelley, M.D. Frogley, G. Cinqueb, J.-C. Tan: Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy, Chem. Commun. 53, 7041–7044 (2017)CrossRefGoogle Scholar
  94. Y.C. Shen, P.C. Upadhya, E.H. Linfield, A.G. Davies: Temperature-dependent low-frequency vibrational spectra of purine and adenine, Appl. Phys. Lett. 82, 2350–2352 (2003)CrossRefGoogle Scholar
  95. M.R. Ryder, B. Civalleri, T.D. Bennett, S. Henke, S. Rudić, G. Cinque, F. Fernandez-Alonso, J.-C. Tan: Identifying the role of terahertz vibrations in metal-organic frameworks: From gate-opening phenomenon to shear-driven structural destabilization, Phys. Rev. Lett. 113, 215502 (2014)CrossRefGoogle Scholar
  96. L.M. Tolbert, K.M. Solntsev: Excited-state proton transfer: From constrained systems to “super” photo acids to superfast proton transfer, Acc. Chem. Res. 35, 19–27 (2002)CrossRefGoogle Scholar
  97. Y. Deng, E. Josberger, J. Jin, A.F. Rousdari, B.A. Helms, C. Zhong, M. Anantram, M. Rolandi: H+-type and OH--type biological protonic semiconductors and complementary devices, Sci. Rep. 3, 2481 (2013)CrossRefGoogle Scholar
  98. A.A. Petrov, N.A. Belich, A.Y. Grishko, N.M. Stepanov, S.G. Dorofeev, E.G. Maksimov, A.V. Shevelkov, S.M. Zakeeruddin, M. Graetzel, A.B. Tarasov, E.A. Goodilin: A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts, Mater. Horiz. 4, 625–632 (2017)CrossRefGoogle Scholar
  99. Y. Hu, H. Kazemian, S. Rohani, Y. Huang, Y. Song: In situ high pressure study of ZIF-8 by FTIR, Chem. Commun. 47, 12694–12696 (2011)CrossRefGoogle Scholar
  100. G. Kumari, K. Jayaramulu, T.K. Maji, C. Narayana: Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study, J. Phys. Chem. A 117, 11006–11012 (2014)CrossRefGoogle Scholar
  101. S.A. Moggach, T.D. Bennett, A.K. Cheetham: The effect of pressure on ZIF-8: Increasing pores size with pressure and the formation of a high pressure phase at 1.47 GPa, Angew. Chem. 121, 7221–7223 (2009)CrossRefGoogle Scholar
  102. A.U. Ortiz, A. Boutin, A.H. Fuchs, F.C. Coudert: Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: Mechanical instability due to shear mode softening, J. Phys. Chem. Lett. 4, 1861–1865 (2013)CrossRefGoogle Scholar
  103. B. Coasne, J. Haines, C. Levelut, O. Cambon, M. Santoro, F. Gorelli, G. Garbarino: Enhanced mechanical strength of zeolites by adsorption of guest molecules, Phys. Chem. Chem. Phys. 13, 20096–20099 (2011)CrossRefGoogle Scholar
  104. E. Boldyreva: Mechanochemistry of inorganic and organic systems: What is similar, what is different?, Chem. Soc. Rev. 42, 7719–7738 (2013)CrossRefGoogle Scholar
  105. E.C. Spencer, R.J. Angel, N.L. Ross, B.E. Hanson, J.A.K. Howard: Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: A high-pressure single-crystal x-ray diffraction study, J. Am. Chem. Soc. 131, 4022–4026 (2009)CrossRefGoogle Scholar
  106. S.R. Madsen, S.A. Moggach, J. Overgaard, B.B. Iversen: Anisotropic compressibility of the coordination polymer emim[Mn(btc)], Acta. Crystallogr. B 72, 389–394 (2016)CrossRefGoogle Scholar
  107. A.D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P.A. Julien, K. Užarević, M.-H. Pham, T.-O. Do, S.A.J. Kimber, P. Lazić, O. Magdysyuk, R.E. Dinnebier, I. Halasz, T. Friščić: In situ x-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework, Nat. Commun. 6, 6662 (2015)CrossRefGoogle Scholar
  108. C. Orellana-Tavra, E.F. Baxter, T. Tian, T.D. Bennett, N.K.H. Slater, A.K. Cheetham: Amorphous metal–organic frameworks for drug delivery, Chem. Commun. 51, 13878–13881 (2015)CrossRefGoogle Scholar
  109. E. Rapoport: Model for melting point maxima at high pressure, J. Chem. Phys. 46, 2891–2895 (1967)CrossRefGoogle Scholar
  110. P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, G.N. Greaves: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory, J. Phys. Condens. Matter 19, 415101 (2007)CrossRefGoogle Scholar
  111. E.G. Ponyatovsky, O.I. Barkolov: Pressure-induced amorphous phases, Mater. Sci. Rep. 8, 147–191 (1992)CrossRefGoogle Scholar
  112. F. Meneau: Studies of Amorphisation in Zeolites, Ph.D. Thesis (Univ. Wales, Aberystwyth 2003)Google Scholar
  113. G.N. Greaves, M.C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, O. Majérus, Q. Van Vu, C.J. Benmore, R. Weber, C.M. Martin, L. Hennet: Detection of first order liquid–liquid phase transitions in yttrium oxide–aluminium oxide melts, Science 322, 566–570 (2008)CrossRefGoogle Scholar
  114. C.A. Angell: Glass formation from liquids and biopolymers, Science 267, 1924–1935 (1995)CrossRefGoogle Scholar
  115. K.L. Ngai, G.N. Greaves, C.T. Moynihan: Correlation between the activation energies for ionic conductivity for short and long time scales and the Kohlrausch stretching parameter \(\beta\) for ionically conducting solids and melts, Phys. Rev. Lett. 80, 1018–1021 (1998)CrossRefGoogle Scholar
  116. D.J. Wales: Energy Landscapes with Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, Cambridge 2003)Google Scholar
  117. A. Heuer: Properties of a glass-forming system as derived from its potential energy landscape, Phys. Rev. Lett. 78, 4051–4054 (1997)CrossRefGoogle Scholar
  118. J.J. Lewandowski, W.H. Wang, A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85, 77–87 (2005)CrossRefGoogle Scholar
  119. V.N. Novikov, A.P. Sokolov: Poisson's ratio and the fragility of glass-forming liquids, Nature 431, 961–963 (2004)CrossRefGoogle Scholar
  120. V.N. Novikov, Y. Ding, A.P. Sokolov: Correlation of fragility of supercooled liquids with elastic properties of glasses, Phys. Rev. E 71, 061501 (2005)CrossRefGoogle Scholar
  121. O. Mishima, L.D. Calvert, E. Whalley: ‘Melting ice' I at 77 K and 10 kbar: A new method of making amorphous materials, Nature 310, 393–395 (1980)CrossRefGoogle Scholar
  122. O. Mishima: Polyamorphism in water, Adv. Chem. Phys. 152, 355–372 (2013)Google Scholar
  123. M.B. Kruger, R. Jeanloz: Memory glass: An amorphous material formed from AlPO4, Science 249, 647–649 (1990)CrossRefGoogle Scholar
  124. S.M. Sharma, S.K. Sikka: Pressure-induced amorphization of materials, Prog. Mater. Sci. 40, 1–77 (1996)CrossRefGoogle Scholar
  125. P. Richet, P. Gillet: Pressure-induced amorphization of minerals: A review, Eur. J. Mineral. 9, 907–933 (1997)CrossRefGoogle Scholar
  126. S.D. Stranks, H.J. Snaith: Metal-halide perovskites for photovoltaic and light-emitting devices, Nat. Nanotechnol. 10, 391–402 (2015)CrossRefGoogle Scholar
  127. I.S. Klein, C.A. Angell: Excess thermodynamic properties of glass-forming liquids: The rational scaling of heat capacities, and the thermodynamic fragility dilemma resolved, J. Non-Cryst. Solids 451, 116–123 (2016)CrossRefGoogle Scholar
  128. S. Aasland, P.F. McMillan: Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3, Nature 369, 633 (1994)CrossRefGoogle Scholar
  129. W. Anderson: Through the glass lightly, Science 267, 1615–1616 (1995)CrossRefGoogle Scholar
  130. J.K.H. Shimizu, J.M. Taylor, S.R. Kim: Proton conduction with metal-organic frameworks, Science 341, 354–355 (2013)CrossRefGoogle Scholar
  131. S.R. Kim, K.W. Dawson, B.S. Gelfand, J.M. Taylor, G.K.H. Shimizu: Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement, J. Am. Chem. Soc. 135, 963–966 (2013)CrossRefGoogle Scholar
  132. S. Pili, S.P. Argent, C.G. Morris, P. Rought, V. García-Sakai, I.P. Silverwood, T.L. Easun, M. Li, M.R. Warren, C.A. Murray, C.C. Tang, S. Yang, M. Schröder: Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere”, J. Am. Chem. Soc. 138, 6352–6355 (2016)CrossRefGoogle Scholar
  133. W. Li, A. Thirumurugan, P.T. Barton, Z. Lin, S. Henke, H.H.-Y. Yeung, M.T. Wharmby, E.G. Bithell, C.J. Howard, A.K. Cheetham: Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture, J. Am. Chem. Soc. 136, 7801–7804 (2014)CrossRefGoogle Scholar
  134. X. Wang, L. Gan, S. Zhang, S. Gao: Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials, Inorg. Chem. 43, 4615–4625 (2004)CrossRefGoogle Scholar
  135. P. Jain, V. Ramachandran, R.J. Clark, H.D. Zhou, B.H. Toby, N.S. Dalal, H.W. Kroto, A.K. Cheetham: Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture, J. Am. Chem. Soc. 131, 13625–13627 (2009)CrossRefGoogle Scholar
  136. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen: Hybrid organic–inorganic perovskites: Low cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater. 1, 15007 (2016)CrossRefGoogle Scholar
  137. R. Shang, S. Chen, Z. Wang, S. Gao: Metal-organic frameworks: Functional magnetic materials with formate. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. by R.A. Scott (Wiley, Hoboken 2014) pp. 1–23Google Scholar
  138. I.A. Baburin, S. Leoni, G. Seifert: Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: A topological and DFT approach, J. Phys. Chem. B 112, 9437–9443 (2008)CrossRefGoogle Scholar
  139. C.S. Cundy, P.A. Cox: Hydrothermal synthesis of zeolite: History and development from the earliest days to the present time, Chem. Rev. 103, 663–702 (2003)CrossRefGoogle Scholar
  140. F.E. Luborsky: Perspective on applications of amorphous alloys in magnetic devices. In: Amorphous Magnetism II, ed. by R.A. Levy, R. Hasegawa (Plenum, Boston 1977)Google Scholar
  141. C.D. Marshall, J.A. Speth, S.A. Payne: Induced optical absorption in gamma, neutron and ultraviolet irradiated fused quartz and silica, J. Non-Cryst. Solids 212, 59–73 (1997)CrossRefGoogle Scholar
  142. G. Müller, S. Kalbitzer: The cystalline-to-amorphous transition in ion-bombarded silicon, Philos. Mag. 41, 307–325 (1980)CrossRefGoogle Scholar
  143. G.N. Greaves, A.J. Dent, B.R. Dobson, S. Kalbitzer, S. Pizzini, G. Müller: Environments of ion-implanted As and Ga impurities in amorphous silicon, Phys. Rev. B 45, 6517–6533 (1992)CrossRefGoogle Scholar
  144. N. Bordes, R.C. Ewing: Ion-beam and electron-beam induced amorphization of berlinite (AlPO4), Mater. Res. Soc. Symp. Proc. 373, 395–400 (1996)CrossRefGoogle Scholar
  145. C. Wiktor, M. Meledina, S. Turner, O.I. Lebedevd, S. Turner, R.A. Fischer: Transmission electron microscopy on metal–organic frameworks—A review, J. Mater. Chem. A 5, 14969–14989 (2017)CrossRefGoogle Scholar
  146. C. Wiktor, S. Turner, D. Zacher, R.A. Fischer, G. Van Tendeloo: Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature, Microporous Mesoporous Mater. 162, 131–135 (2012)CrossRefGoogle Scholar
  147. W. Bras, H. Stanley: Unexpected effects in non-crystalline materials exposed to x-ray radiation, J. Non-Cryst. Solids 451, 153–160 (2016)CrossRefGoogle Scholar
  148. E.D. Zanotto, D.R. Cassar: The microscopic origin of the extreme glass-forming ability of Albite and B2O3, Sci. Rep. 7, 43022 (2017)CrossRefGoogle Scholar
  149. L.M. Wang, C.A. Angell, R. Richert: Fragility and thermodynamics in nonpolymeric glass-forming liquids, J. Chem. Phys. 125, 074505 (2006)CrossRefGoogle Scholar
  150. J.D. Stevenson, P.G. Wolynes: Thermodynamic-kinetic correlations in supercooled liquids: A critical survey of experimental data and predictions of the random first-order transition theory of glasses, J. Phys. Chem. B 109, 15093–15097 (2005)CrossRefGoogle Scholar
  151. W.H. Wang: Correlations between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys. 99, 093506 (2006)CrossRefGoogle Scholar
  152. J. Orava, A.L. Greer: Fast and slow crystal growth kinetics in glass-forming melts, J. Chem. Phys. 140, 214504 (2014)CrossRefGoogle Scholar
  153. J. Orava, A.L. Greer: Fast crystal growth in glass-forming liquids, J. Non-Cryst. Solids 451, 94–100 (2016)CrossRefGoogle Scholar
  154. J.S. Chen, R.H. Jones, S. Natarajan, M.B. Hursthouse, J.M. Thomas: A novel open-framework cobalt phosphate containing a tetrahedrally coordinated Cobalt(II) center: CoPO4\(\cdot\)0.5C2H10N2, Angew. Chem. Int. Ed. 33, 639–640 (1994)CrossRefGoogle Scholar
  155. L. Zong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao: Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512, 177–180 (2014)CrossRefGoogle Scholar
  156. P. Richet, Y. Bottinga: Rheology and configurational entropy of silicate melts, Rev. Mineral. 32, 67–93 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept. of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Dept. of PhysicsAberystwyth UniversityAberystwythUK

Personalised recommendations