Advertisement

Metallic Glasses

  • Jean-Marc PelletierEmail author
  • Jichao Qiao
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Many industrial applications require materials with remarkable and sometimes contradictory properties. Let us mention a few examples. In the field of biomaterials (dental implants), micromechanics (gears) or in the field of jewelry or watches (luxury watches), a need is felt very clearly: That of materials that are both hard, wear resistant, biocompatible, possess a high yield strength, while being deformable. However, such ‘‘ideal'' materials do not exist at present, and hence the numerous ongoing research being reported in this field. Polymers are easy to use and deformable but not mechanically resistant; ceramics are very hard but often brittle, metals can be deformable but they are, in this case, characterized by ordinary mechanical properties.

It is well known that metallic glasses have a great potential for industrial applications. In general, metallic glasses possess high strength, high elastic limits, excellent corrosion resistance, and thermoplastic formability compared to crystalline materials. This combination of structural and functional properties makes them potential candidates for applications where the use of conventional materials has reached a limit of effectiveness.

This chapter addresses the history of bulk metallic glasses, their thermal stability, and their most attractive properties. Some examples of industrial applications are given.

References

  1. W. Klement, R.H. Willens, P. Duwez: Non-crystalline structure in solidifed gold-silicon alloy, Nature 187, 869–870 (1960)CrossRefGoogle Scholar
  2. A. Inoue: Stabilization of metallic supercooled liquids and bulk amorphous alloys, Acta Mater. 48(1), 279–306 (2000)CrossRefGoogle Scholar
  3. A. Inoue, A. Takeuchi: Recent development and application products of bulk metallic glassy alloys, Acta Mater. 59(6), 2273–2267 (2011)CrossRefGoogle Scholar
  4. A. Peker, W.L. Johnson: A highly possible metallic glass, Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett. 63, 2342–2344 (1993)CrossRefGoogle Scholar
  5. M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, C. Esnouf: Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses, Thin Solid Films 561, 53–59 (2014)CrossRefGoogle Scholar
  6. J. Hwang, Z.H. Melgarejo, Y.E. Kalay, M. Kalayi, M.J. Kramer, D.S. Jones, P.M. Voyles: Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass, Phys. Rev. Lett. 108(19), 195505 (2012)CrossRefGoogle Scholar
  7. J.W. Qiao, H. Jia, P.K. Liaw: Metallic glass matrix composites, Mater. Sci. Eng. R 100, 1–69 (2016)CrossRefGoogle Scholar
  8. N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y.Q. Zheng, A. Inoue: The world's biggest glassy alloy ever made, Intermetallics 30, 19–24 (2011)CrossRefGoogle Scholar
  9. W.H. Wang: Role of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci. 55(4), 540–596 (2007)CrossRefGoogle Scholar
  10. M.K. Datta, D.T. Chou, D. Hong, P. Saha, S.J. Chung, B. Lee, A. Sirinterlikci, M. Ramanathan, A. Roy, P.N. Kumta: Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying, Mater. Sci. Eng. B 176, 1637–1643 (2011)CrossRefGoogle Scholar
  11. L.C. Zhang, J. Xu, E. Ma: Consolidation and properties of ball-milled TiCuNiAlSn glassy alloy by equal channel angular extrusion, Mater. Sci. Eng. A 434, 280–288 (2006)CrossRefGoogle Scholar
  12. L. Krämer, K.S. Kormout, D. Setman, Y. Champion, R. Pippan: Production of bulk metallic glasses by severe plastic deformation, Metals 2, 720–729 (2015)CrossRefGoogle Scholar
  13. X. Lan, H. Wu, Y. Liu, W. Zhang, R. Li, S. Chen, X. Zai, T. Hu: Microstructure and tribological properties of laser cladded Ti-based metallic glass composite coatings, Mater. Charact. 120, 82–89 (2016)CrossRefGoogle Scholar
  14. Z. Li, C. Zhang, L. Liu: Wear behaviour and corrosion properties of Fe-based thin film metallic glasses, J. Alloy. Compd. 650, 127–135 (2015)CrossRefGoogle Scholar
  15. P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang: Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating, Intermetallics 31, 127–131 (2012)CrossRefGoogle Scholar
  16. S.D. Zhang, W.L. Zhang, S.G. Wang, X.J. Gu, J.Q. Wang: Characterization of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour, Corros. Sci. 93, 211–221 (2015)CrossRefGoogle Scholar
  17. S. Cardinal, J.M. Pelletier, J.C. Qiao, G. Bonnefont, G. Xie: Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder, Mater. Sci. Eng. A 677, 116–124 (2016)CrossRefGoogle Scholar
  18. G. Xie, F. Qin, S. Zhu, A. Inoue: Ni-free Ti-based bulk metallic glass with potential for biomedical applications produced by spark plasma sintering, Intermetallics 29, 99–103 (2012)CrossRefGoogle Scholar
  19. J. Qiao, J.M. Pelletier, H.C. Kou, X. Zhou: Modification of atomic mobility in a Ti-based bulk metallic glass by plastic deformation or thermal annealing, Intermetallics 28, 28–137 (2012)Google Scholar
  20. G. Vigier, J. Tatibouet: Physical ageing of amorphous and semicrystalline poly(ethylene terephtalate), Polymer 34(20), 3038–3041 (1993)CrossRefGoogle Scholar
  21. A. Slipenyuk, J. Eckert: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scr. Mater. 50(5), 39–44 (2004)CrossRefGoogle Scholar
  22. Y. Yokoyama, Y. Akeno, T. Yamasaki, P.K. Liaw, R.A. Buchanan, A. Inoue: Evolution of mechanical properties of cast ZrCuAl glassy alloy by structural relaxation, Mater. Trans. 46(12), 2755–2761 (2005)CrossRefGoogle Scholar
  23. J. Perez: Quasi-punctual defects in vitreous solids and liquid-glass transition, Solid State Ion. 39(1/2), 69–79 (1990)CrossRefGoogle Scholar
  24. R. Rinaldi, R. Gartner, L. Chazeau, C. Gauthier: Modelling of the mechanical behaviour of amorphous glass polymer based on the quasi-point defect theory, Int. J. Non-Linear Mech. 46(3), 496–506 (2011)CrossRefGoogle Scholar
  25. J. Qiao, J.M. Pelletier: Mechanical relaxation in a Zr-based bulk metallic glass: Analysis based on physical models, J. Appl. Phys. 112, 033518 (2012)CrossRefGoogle Scholar
  26. O. Haruyama: Thermodynamic approach to free volume kinetics during isothermal relaxation in bulk PdCuNiP glasses, Intermetallics 15(5/6), 659–662 (2007)CrossRefGoogle Scholar
  27. O. Haruyama, Y. Nakatama, R. Wada, H. Kotunage, J. Okada, T. Ishikawa, Y. Yokoyama: Volume and enthalpy relaxation in ZrCuNiAl bulk metallic glass, Acta Mater. 58(1), 1829–1836 (2010)CrossRefGoogle Scholar
  28. T. Zhang, F. Ye, Y.L. Wang, J.P. Lin: Structural relaxation of LaAlNiCu bulk metallic glass, Metall. Mater. Trans. A 39(8), 1953–1957 (2008)CrossRefGoogle Scholar
  29. M. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek: Non-exponential relaxation in strong and fragile glass formers, J. Chem. Phys. 99(5), 4201–4209 (1993)CrossRefGoogle Scholar
  30. Y. Zhang, H. Hahn: Study of the kinetics of the free volume in ZrCuAlAg bulk metallic glass during isothermal relaxation by enthalpy relaxation experiments, J. Non-Cryst. Solids 355(52–54), 2616–2621 (2009)CrossRefGoogle Scholar
  31. I. Gallino, M.B. Shah, R. Busch: Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy, Acta Mater. 55(4), 1367–1376 (2007)CrossRefGoogle Scholar
  32. R. Svoboda, P. Honcova, J. Malek: Apparent activation energy of structural relaxation for SeTe glass, J. Non-Cryst. Solids 356(3), 165–168 (2010)CrossRefGoogle Scholar
  33. J. Qiao, J.M. Pelletier, Q. Wang, W. Jiao, W.H. Wang: On calorimetric study of the fragility in bulk metallic glasses with low glass transition temperature: (Ce0.72Cu0.28)Al10Fex (x=0, 5 or 10) and Zn38Mg12Ca32Yb18, Intermetallics 19, 1367–1373 (2011)Google Scholar
  34. J. Tan, Y. Zhang, M. Stoica, U. Kühn, N. Mattern, F.S. Pan, J. Eckert: Study of mechanical properties and crystallization of a ZrCoAl bulk metallic glass, Intermetallics 19(4), 567–571 (2011)CrossRefGoogle Scholar
  35. H.E. Kissinger: Reaction kinetics in differential thermal analysis, Anal. Chem. 29(11), 1702–1706 (1957)CrossRefGoogle Scholar
  36. J.M. Pelletier, B. Van de Moortèle: Phase separation and crystallization in the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glasses determined by physical measurements and electron microscopy, J. Non-Cryst. Solids 325, 133–141 (2003)CrossRefGoogle Scholar
  37. B. Van de Moortèle, T. Epicier, J.M. Pelletier, J.L. Soubeyroux: Phase separation before crystallization in Zr-Ti-Cu-Ni-Be bulk metallic glasses? Influence of the chemical composition, J. Non-Cryst. Solids 169, 345–346 (2004)Google Scholar
  38. J. Qiao, J.M. Pelletier: Crystallization kinetics in Cu46Zr45A17Y2 bulk metallic glass by differential scanning calorimetry (DSC), J. Non-Cryst. Solids 357, 2590–2594 (2011)CrossRefGoogle Scholar
  39. Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, Y. Yao: Non-isothermal crystallization transformation kinetics analysis and isothermal crystallization kinetics in super-cooled liquid region (SLR) of (Ce0.72Cu0.28)90-xAl10Fex (x=0, 5 or 10) bulk metallic glasses, J. Non-Cryst. Solids 415, 42–50 (2015)Google Scholar
  40. D. Okai, Y. Shimizu, N. Hirano, T. Fukami, T. Yamasaki, A. Inoue: Isothermal crystallization in supercooled liquid state for CaMgCu metallic glass, J. Alloy. Compd. 504, S247–S250 (2010)CrossRefGoogle Scholar
  41. Y.D. Sun, Z.Q. Li, J.S. Liu, J.N. Yang, M.Q. Cong: Crystallization kinetics of Mg61Cu28Gd11 and (Mg61Cu28Gd11)99.5Sb0.5 bulk metallic glasses, J. Alloy. Compd. 506, 302–307 (2010)CrossRefGoogle Scholar
  42. M.F. Ashby, A.L. Greer: Metallic glasses as structural materials, Scr. Mater. 54(3), 321–326 (2006)CrossRefGoogle Scholar
  43. C.A. Schuh, T.C. Hufnagel, U. Ramamurty: Mechanical properties of amorphous alloys, Acta Mater. 55, 4067–4109 (2007)CrossRefGoogle Scholar
  44. W.H. Wang: Bulk metallic glasses with functional physical properties, Adv. Mater. 21(45), 4524–4544 (2009)CrossRefGoogle Scholar
  45. M.M. Trexler, N.N. Thadhani: Mechanical properties of bulk metallic glasses, Prog. Mater. Sci. 55(8), 759–839 (2010)CrossRefGoogle Scholar
  46. W.H. Wang: The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57(5), 487–656 (2012)CrossRefGoogle Scholar
  47. J. Qiao, J.M. Pelletier: Dynamic mechanical relaxation in bulk metallic glasses: A review, J. Mater. Sci. Technol. 30(6), 523–545 (2014)CrossRefGoogle Scholar
  48. C. Liu, E. Pineda, D. Crespo: Mechanical relaxation of metallic glasses: Overview of experimental data and theoretical models, Metals 5, 1073–1111 (2015)CrossRefGoogle Scholar
  49. T. Hufnagel, C.A. Schuh, M. Falk: Deformation of metallic glasses: Recent developments in theory, simulations and experiments, Acta Mater. 109, 375–391 (2016)CrossRefGoogle Scholar
  50. J.M. Pelletier, B.I.R.L. Van de Moortèle: Viscoelasticity and viscosity of Pd-Ni-Cu-P bulk metallic glasses, Mater. Sci. Eng. A 336, 190–195 (2002)CrossRefGoogle Scholar
  51. J.M. Pelletier, Q. Wang, C. Gauthier, J.J. Blandin: Viscoelastic and viscoplastic properties of bulk metallic glass. Comparison with oxide glasses and amorphous polymers, J. Non-Cryst. Solids 469, 345–346 (2004)Google Scholar
  52. J.M. Pelletier: Dynamic mechanical properties in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass, J. Alloy. Compd. 393, 223–230 (2005)CrossRefGoogle Scholar
  53. J.M. Pelletier, B. Van de Moortèle: Mechanical properties of bulk metallic glasses: Elastic, visco-elastic and visco-plastic components of the deformation, J. Non-Cryst. Solids 353, 3750–3753 (2007)CrossRefGoogle Scholar
  54. J.M. Pelletier: Influence of structural relaxation on atomic mobility in a Zr41.2Ti13.8Cu12.5NI10.0Be22.5 (Vit1) bulk metallic glass, J. Non-Cryst. Solids 354, 3666–3670 (2008)CrossRefGoogle Scholar
  55. J.M. Pelletier, D. Louzguine-Luzgin, S. Li, A. Inoue: Elastic and visco-elastic properties of glassy, quasi-crystalline and crystalline phases in Zr65Cu5Ni10Al7.5Pd12.5 alloys, Acta Mater. 59, 2797–2806 (2011)CrossRefGoogle Scholar
  56. J. Qiao, J.M. Pelletier: Dynamic mechanical analysis in La-based bulk metallic glasses: Secondary (\({\beta}\)) and main (\({\alpha}\)) relaxations, J. Appl. Phys. 112, 083528 (2012)CrossRefGoogle Scholar
  57. J. Qiao, J.M. Pelletier, R. Casalini: Relaxation of bulk metallic glasses studied by mechanical spectroscopy, J. Phys. Chem. B 117, 13658–13666 (2013)CrossRefGoogle Scholar
  58. J. Qiao, R. Casalini, J.M. Pelletier, H. Kato: Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids, J. Phys. Chem. B 118, 3720–3730 (2014)CrossRefGoogle Scholar
  59. S. Havriliak, S. Negami: A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer 8, 161–210 (1967)CrossRefGoogle Scholar
  60. P. Lunkenheimer, U. Schneider, R. Brand, A. Loid: Glass dynamics, Contemp. Phys. 41(1), 15–36 (2000)CrossRefGoogle Scholar
  61. P. Wen, D.Q. Zhao, M.X. Pan, W.H. Wang, J.P. Shui, Y.P. Sun: Relaxation behaviour of bulk glass forming ZrTiCuNiBe alloy, Intermetallics 12(10/11), 1245–1249 (2004)CrossRefGoogle Scholar
  62. P.G. Debenedetti, F.H. Stillinger: Supercooled liquids and the glass transition, Nature 410(6825), 259–267 (2001)CrossRefGoogle Scholar
  63. Z. Wang, H.B. Yu, P. Wen, H.Y. Bai, W.H. Wang: Pronounced slow \({\beta}\) relaxation in La-based bulk metallic glasses, J. Phys. Condens. Matter 23(14), 142202 (2012)CrossRefGoogle Scholar
  64. Y. Yan, J.F. Zeng, A. Volland, J.J. Blandin, S. Gravier, C.T. Liu: Fractal growth of dense packing in annealed metallic glass imaged by high-resolution atomic force microscopy, Acta Mater. 60(13/14), 5260–5272 (2012)Google Scholar
  65. Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen: Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy, Phys. Rev. Lett. 106(12), 125504 (2011)CrossRefGoogle Scholar
  66. Y.B. Yu, W.H. Wang, H.Y. Bay, Y. Wu, M.W. Chen: Relating activation of shear transformation zones to \({\beta}\) relaxation in metallic glasses, Phys. Rev. B 22, 220201 (2010)CrossRefGoogle Scholar
  67. Y.B. Yu, X. Shen, Z. Wang, L. Gu, W.H. Wang, Y.Y. Bai: Tensile plasticity in metallic glasses with pronounced \({\beta}\) relaxations, Phys. Rev. Lett. 108(1), 015504 (2012)CrossRefGoogle Scholar
  68. A.S. Argon: Plastic deformation in metallic glasses, Acta Metall. Mater. 27(1), 47–58 (1979)CrossRefGoogle Scholar
  69. J. Perez, F. Fouquet, Y. He: Homogenous flow in metallic glasses, Phys. Status Solidi 72, 289–300 (1982)CrossRefGoogle Scholar
  70. A.S. Argon, L.T. Shi: Development of viscoplastic deformation in metallic glasses, Acta Metall. Mater. 31(4), 499–507 (1983)CrossRefGoogle Scholar
  71. Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto: Stress overshoot in strain-stress curves of ZrCuNiCu metallic glass, Mater. Trans. 40(4), 335–342 (1999)CrossRefGoogle Scholar
  72. J. Lu, G. Ravichandran, W.L. Johnson: Deformation behaviour of the Zr-Ti-Cu-Ni-Be bulk metallic glass over a wide range of strain-rates and temperatures, Acta Mater. 51(12), 3429–3443 (2003)CrossRefGoogle Scholar
  73. C.A. Schuh, A.C. Lund, T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses, Acta Mater. 52(20), 5879–5891 (2004)CrossRefGoogle Scholar
  74. M. Bletry, P. Guyot, Y. Brechet, J.J. Blandin, J.L. Soubeyroux: Homogeneous deformation of a Zr-based bulk metallic glass, Intermetallics 12(1/2), 1051–1055 (2004)CrossRefGoogle Scholar
  75. W.L. Johnson, K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence, Phys. Rev. Lett. 95(19), 195501 (2005)CrossRefGoogle Scholar
  76. Q. Wang, S. Gravier, J.J. Blandin, J.M. Pelletier, J. Lu: Deformation and crystallization of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass in the supercooled liquid region, Mater. Sci. Eng. A 435/436, 405–411 (2006)CrossRefGoogle Scholar
  77. Q. Wang, J.J. Blandin, M. Suery, J.M. Pelletier: Mechanical properties over the glass transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass, J. Non-Cryst. Solids 351, 2224–2231 (2005)CrossRefGoogle Scholar
  78. M. Bletry, P. Guyot, J.J. Blandin, J.L. Soubeyroux: Free volume model: high temperature deformation of a Zr-based bulk metallic glass, Acta Mater. 54(1/2), 1257–1263 (2006)CrossRefGoogle Scholar
  79. W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, K. Samwer: Rheology and ultrasonic properties of metallic glass forming liquids: A potential energy landscape perspective, MRS Bulletin 32(8), 644–650 (2007)CrossRefGoogle Scholar
  80. J. Forell, S. Surinach, M.D. Baró, J. Sort: Unconventional elastic properties, deformation behaviour and fracture characteristics of newly developed rare earth bulk metallic glasses, Intermetallics 17(12), 1090–1097 (2009)CrossRefGoogle Scholar
  81. J. Fornell, A. Concustell, S. Surinach, W.H. Li, N. Cuadrado, A. Gebert, M.D. Baró, J. Sort: Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass, Int. J. Plast. 25(8), 1540–1559 (2009)CrossRefGoogle Scholar
  82. T. Burgess, M. Ferry: Nanoindentation of metallic glasses, Mater. Today 12(1/2), 24–32 (2009)CrossRefGoogle Scholar
  83. Q. Wang, D.K. Wang, T. Fu, J.J. Blandin, J.M. Pelletier, Y.D. Dong: High temperature homogeneous plastic flow behavior of a Zr based bulk metallic glass matrix composite, J. Alloy. Compd. 495, 50 (2010)CrossRefGoogle Scholar
  84. Y. Liu, J.J. Blandin, G. Kapelski, M. Suery: High temperature deformation of a CuZrAlAg bulk metallic glass, Mater. Sci. Eng. A 528(10/11), 3748–3753 (2011)CrossRefGoogle Scholar
  85. J.N. Mei, J.L. Soubeyroux, J.J. Blandin, J.S. Li, H.C. Kou, H.Z. Fu, L. Zhou: Homogeneous deformation of Ti41.5Cu37.5Ni7.5Zr2.5Hf5Sn5Si1 bulk metallic glass in the supercooled liquid region, Intermetallics 19(1), 48–53 (2011)CrossRefGoogle Scholar
  86. A.L. Greer, Y.Q. Cheng, E. Ma: Shear bands in metallic glasses, Mater. Sci. Eng. R 74, 71–132 (2013)CrossRefGoogle Scholar
  87. J. Qiao, J.M. Pelletier, C. Esnouf, H. Kato: Impact of the structural state on the mechanical properties in a Zr-Co-Al bulk metallic glass, J. Alloy. Compd. 607, 139–149 (2014)CrossRefGoogle Scholar
  88. J.Y. Na, M. Demetriou, M. Floyd, A. Hoff, G.R. Garrett, W.L. Johnson: Compositional landscape for glass formation in metal alloys, Proc. Natl. Acad. Sci. USA 111(25), 9031–9036 (2014)CrossRefGoogle Scholar
  89. W.H. Wang, Y. Yang, T.G. Nieh, C.T. Liu: On the source of plastic flow in metallic glasses: Concepts and models, Intermetallics 67, 81–86 (2015)CrossRefGoogle Scholar
  90. J. Qiao, S. Cardinal, J.M. Pelletier, H. Kato: Insight on the process ability of bulk metallic glasses by thermo-mechanical analysis and dynamic mechanical analysis, J. Alloy. Compd. 628, 357–363 (2015)CrossRefGoogle Scholar
  91. S. Cardinal, J. Qiao, J.M. Pelletier, H. Kato: Bulk metallic glasses based on precious metals: Thermal treatments and mechanical properties, Intermetallics 63, 73–79 (2015)CrossRefGoogle Scholar
  92. J.C. Qiao, Y.J. Wang, J.M. Pelletier, L.M. Keer, M.E. Fine, Y. Yao: Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass, Acta Mater. 95, 43–50 (2015)CrossRefGoogle Scholar
  93. C. Zhang, J.C. Qiao, J.M. Pelletier, Y. Yao: Thermal activation in the Zr65Cu18Ni7Al10 metallic glass by creep deformation and stress relaxation, Scr. Mater. 113, 180–184 (2016)CrossRefGoogle Scholar
  94. Z.F. Yao, J.C. Qiao, J.M. Pelletier, Y. Yao: High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass, J. Mater. Sci. 51, 4079–4087 (2016)CrossRefGoogle Scholar
  95. S. Cardinal, J.M. Pelletier, M. Eisenbart, U.E. Klotz: Influence of crystallinity on thermo-process ability and mechanical properties in an Au-based bulk metallic glass, Mater. Sci. Eng. A 660, 158–165 (2016)CrossRefGoogle Scholar
  96. Y. Tong, J.C. Qiao, C. Zhang, J.M. Pelletier, Y. Yao: Mechanical properties of Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high entropy bulk metallic glass, J. Non-Cryst. Solids 452, 57–61 (2016)CrossRefGoogle Scholar
  97. C.A. Angell: Relaxations in liquids, polymers and plastic crystals: Strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13–31 (1995)Google Scholar
  98. E.S. Park, J.Y. Lee, D.H. Kim, A. Gebert, L. Schultz: Correlation between plasticity and fragility in Mg-based bulk metallic glasses with modulated heterogeneity, J. Appl. Phys. 104(2), 023520 (2008)CrossRefGoogle Scholar
  99. A. Takeuchi, H. Kato, A. Inoue: Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transition temperature for metallic glasses in liquid and supercooled liquid states, Intermetallics 18(4), 406–411 (2010)CrossRefGoogle Scholar
  100. G.Y. Wang, P.K. Liaw: Bending fatigue behaviour of bulk metallic glasses and their composites, J. Metals 62(4), 25–33 (2010)Google Scholar
  101. R.O. Ritchie, V. Schroeder, C.J. Gilbert: Fracture, fatigue and environmentally-assisted failure of a Zr-based bulk amorphous metal, Intermetallics 8(5/6), 469–475 (2000)CrossRefGoogle Scholar
  102. S.V. Madge, D.V. Louzguine-Luzgin, J.J. Lewandowski, A.L. Greer: Toughness, extrinsic effects and Poisson's ratio of bulk metallic glasses, Acta Mater. 60(12), 4800–4809 (2012)CrossRefGoogle Scholar
  103. B. Gludovatz, S.E. Naleway, R.O. Ritchie, J.J. Kruzic: Size-dependent fracture toughness of bulk metallic glasses, Acta Mater. 70, 198–207 (2014)CrossRefGoogle Scholar
  104. S.A. Sun, W.H. Wang: The fracture of bulk metallic glasses, Prog. Mater. Sci. 74, 211–307 (2015)CrossRefGoogle Scholar
  105. W. Chen, J. Ketkaew, Z. Liu, R.M. Ojeda Mota, K. O'Brien: C. Sene da Silva, J. Schroers: Does the fracture toughness of bulk metallic glasses scatter?, Scr. Mater. 107(10), 1–4 (2015)CrossRefGoogle Scholar
  106. W. Chen, Z. Liu, J. Ketkaew, R.M. Ojeda Mota, S.H. Kim, M. Power, W. Samela, J. Schroers: Flaw tolerance of metallic glasses, Acta Mater. 107(4), 220–228 (2016)CrossRefGoogle Scholar
  107. W. Chen, H. Zhou, Z. Liu, J. Ketkaew, N. Li, J. Yurko, N. Hutchinson, H. Gao, J. Schroers: Processing effects on fracture toughness of metallic glasses, Scripta Mater. 130(3), 152–156 (2017)CrossRefGoogle Scholar
  108. T. Xu, S. Pang, H. Li, T. Zhang: Corrosion resistant of Cr-based bulk metallic glass with high strength and hardness, J. Non-Cryst. Solids 410, 20–25 (2015)CrossRefGoogle Scholar
  109. N. Hua, Z. Zheng, H. Fang, X. Ye, C. Lin, G. Li, W. Wang, W. Chen, T. Zhang: Dry and lubrificated tribological behaviour of a Ni- and Cu-free Zr-based bulk metallic glass, J. Non-Cryst. Solids 426, 63–71 (2015)CrossRefGoogle Scholar
  110. B. Guan, X. Shi, Z. Dan, G. Xie, M. Niinomi, F. Qin: Corrosion behaviour, mechanical properties and cell toxicity of Zr-based bulk metallic glasses, Intermetallics 72, 69–75 (2016)CrossRefGoogle Scholar
  111. R. Nowosielski, A. Bajorek, R. Babilas: Corrosion behaviour of bioresorbable bulk metallic glasses, J. Non-Cryst. Solids 447, 126–133 (2016)CrossRefGoogle Scholar
  112. W. Zhou, W.P. Weng, J.X. Hou: Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass, J. Mater. Sci. Technol. 32, 349–354 (2016)CrossRefGoogle Scholar
  113. M. Zhou, K. Hagos, H. Huang, M. Yang, L. Ma: Improved mechanical properties and pitting corrosion resistance of ZrCuFeAl bulk metallic glass by isothermal annealing, J. Non-Cryst. Solids 452, 50–56 (2016)CrossRefGoogle Scholar
  114. C. Haon, D. Camel, B. Drevet, J.M. Pelletier: Pd-Ni-Cu-P bulk metallic glass: A very low damping material, Metall. Trans. 39A, 1791–1796 (2008)CrossRefGoogle Scholar
  115. J. Schroers: Bulk metallic glasses, Phys. Today 66(2), 32–37 (2013)CrossRefGoogle Scholar
  116. G. Kumar, A. Deasi, J. Schroers: Bulk metallic glasses: The smaller the better, Adv. Mater. 23(4), 461–476 (2011)CrossRefGoogle Scholar
  117. L. Huang, C. Pu, R.K. Fisher, D.J.H. Mountain, Y. Gao, P.K. Liaw, W. Zhang, W. He: A Zr-based bulk metallic glass for future stent applications; Materials properties, finite element modelling and in vitro human vascular cell response, Acta Biomater. 25, 356–368 (2015)CrossRefGoogle Scholar
  118. S. Li, Q. Wei, Q. Li, B. Jiang, Y. Chen, Y. Sun: Development of Fe-based bulk metallic glasses as potential biomaterials, Mater. Sci. Eng. C 52, 235–241 (2015)CrossRefGoogle Scholar
  119. M.S. Dambatta, S. Izman, B. Yahaya, J.Y. Lim, D. Kurnaiwan: Mg-based bulk metallic glasses for biodegradable implant materials, J. Non-Cryst. Solids 426, 110–115 (2015)CrossRefGoogle Scholar
  120. J. Liu, G. Wang, H. Li, S. Pang, K. Chen, T. Zhang: Ti-Cu-Zr-Fe-Sn-Si-Sc bulk metallic glasses with good mechanical properties for biomedical applications, J. Alloy. Compd. 679, 341–349 (2016)CrossRefGoogle Scholar
  121. H.F. Li, Y.F. Zheng: Recent advances in bulk metallic glasses for biomedical applications, Acta Biomater. 36, 1–20 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INSA-Lyon, MATEIS UMR 55140University of LyonVilleurbanneFrance
  2. 2.School of Mechanics, Civil Engineering & ArchitectureNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations