Advertisement

Halide Glasses

  • Alexis G. Clare
  • Peter F. Wachtel
  • J. David MusgravesEmail author
Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

Halide glasses, formed from a basis of fluorine, chlorine, bromine, or iodine, are interesting materials because their transparency range can span from the ultraviolet all the way into the infrared portion of the spectrum. Halides are, in general, conditional glass formers, and great experimental care must be taken in producing fully amorphous materials. In addition, because of their more ionic bonding, they exhibit much greater sensitivity to moisture than other glasses.

In this chapter we will begin with a discussion of the differences between ionic and covalent bonding in glassy materials, which is a critical consideration in designing halide glass types, and also provides a strong foundation for understanding their physical and optical properties. Among the halide materials, the main focus in this chapter is the fluoride glasses, which offer the best forming ability and have been the most widely commercialized. The rare earth solubility of halides is discussed in depth, as the halides have historically found some of their greatest use in fiber laser applications.

References

  1. V.M. Goldschmidt: Geochemische Verteilungsgesetze der Elemente, Skr. Utg. Nor. Vidensk. Akad. Oslo 8, 127 (1926)Google Scholar
  2. A.G. Pincus: Note on low refration and dispersion of beryllium fluoride glass, J. Opt. Soc. Am. 35(1), 92–92 (1945)CrossRefGoogle Scholar
  3. M. Imaoka, S. Mizusawa: Studies on fluoride glass. I. BeF2-LiF, NaF, KF system, J. Ceram. Assoc. Jpn. 61(1), 13–14 (1953)Google Scholar
  4. D.M. Roy, R. Roy, E.F. Osborn: Phase relations and structural phenomena in the fluoride-model systems LiF-BeF2 and NaF-BeF2, J. Am. Ceram. Soc. 33(3), 85–90 (1950)CrossRefGoogle Scholar
  5. S. Kuan-Han, M.L. Huggins: Optical glass to fluoride, FR Patent 919006 (1947) in FrenchGoogle Scholar
  6. E. Thilo, H.-A. Lehmann: Über das System LiF-BeF2 und seine Beziehungen zum System MgO-SiO2, Z. Anorg. Allgem. Chem. 258(3–5), 332–355 (1949)CrossRefGoogle Scholar
  7. M.P. Borzenkova, A.V. Novoselova, P.Y. Simanov, V.I. Chernykh, E.I. Yarembash: Thermal and phase x-ray analyses of the system KF-BeF2, Zh. Neorg. Khim. 1(9), 2071–2082 (1956)Google Scholar
  8. M.S. Genrikh, L.I. Ignatjeva: Fluoride glasses, Opt. Mekh. Prom. 6, 46–51 (1957)Google Scholar
  9. W. Vogel, K. Gerth: Zur Struktur von Fluoridgläsern. III. Teil Die ternären Alkali-Erdalkali-Berylliumfluorid-Glassysteme MgF2, CaF2, SrF2, BaF2-KF-BeF2, MgF2, CaF2, SrF2-NaF-BeF2, MgF2-LiF-BeF2, Silikattechnik 9(11), 495–501 (1958)Google Scholar
  10. T. Izumitani: Fundamental Studies on New Optical Glasses (Rep. Governm. Ind. Res. Inst., Osaka 1958), No. 311Google Scholar
  11. P.F. De Paolis: Infrared transmitting fluoride glass, US Patent 2819977 (1958)Google Scholar
  12. K.S. Evstropiev, A.K. Yakhkind, M.S. Genrikh: Commercial and experimental glasses with new optical constants, Infor. Byull. GOI 2(37), 24 (1959)Google Scholar
  13. B.F. Warren, C.F. Hill: The structure of vitreous BeF2, Z. Kristallogr. 89, 481 (1934)Google Scholar
  14. S. Kuan-Han, M.L. Huggins: Berylium boro-phosphate glass, US Patent 2414661 (1947)Google Scholar
  15. S. Kuan-Han, M.L. Huggins: Fluoride glasses, US Patent 2511224 (1950)Google Scholar
  16. S. Kuan-Han, M.L. Huggins: Oxyfluoride glasses, US Patent 2578325 (1951)Google Scholar
  17. S. Kuan-Han, M.L. Huggins: Improvements in the manufacture of glass, GB Patent 606509 (1948)Google Scholar
  18. S. Kuan-Han: Method of making fluoride glass, US Patent 2466507 (1949)Google Scholar
  19. P.F. De Paolis: New optical glasses, FR Patent 1151911 (1958)Google Scholar
  20. P.F. De Paolis: Improved glass, GB Patent 792402 (1958)Google Scholar
  21. P.F. De Paolis: Fluoride glass, DE Patent 1056797 (1959)Google Scholar
  22. M. Poulain, M. Poulain, J. Lucas: Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3, Mater. Res. Bull. 10, 243 (1975)CrossRefGoogle Scholar
  23. N.I. Grebenshchikova, G.T. Petrovskii: Kinetic of dissolution of some fluoro-berillate glasses in water, Zh. Prikl. Khim. 36(6), 1199–1204 (1963)Google Scholar
  24. A.A. Margaryan, K.S. Evstropiev: Problems of chemical durability of fluor-berrylate glasses, Neorg. Mater. 4(1), 116–120 (1968)Google Scholar
  25. G.P. Nikolina, V.D. Khalilev, K.S. Evstropiev: Moisture resistance and crystallization of fluoroberyllate glasses, Neorg. Mater. 6(3), 582–584 (1970)Google Scholar
  26. C.F. Cline, D.D. Kingman, M.J. Weber: Durability of beryllium fluoride glasses in water: Comparison with other glasses and crystals, J. Non-Cryst. Solids 33(3), 417–421 (1979)CrossRefGoogle Scholar
  27. C.J. Simmons, H. Sutter, J.H. Simmons, D.C. Tran: Aqueous corrosion studies of a fluorozirconate glass, Mater. Res. Bull. 17(9), 1203–1210 (1982)CrossRefGoogle Scholar
  28. C.J. Simmons, J.H. Simmons: Chemical durability of fluoride glasses: I. Reaction of fluorozirconate glasses with water, J. Am. Ceram. Soc. 69(9), 661–669 (1986)CrossRefGoogle Scholar
  29. S. Mitachi: Chemical durability of fluoride glasses in the BaF2-GdF3-ZrF4 system, Phys. Chem. Glasses 24(6), 146–149 (1983)Google Scholar
  30. R.H. Doremus, D. Murphy, N.P. Bansal, W.A. Lanford, C. Burman: Reaction of zirconium fluoride glass with water: Kinetics of dissolution, J. Mater. Sci. 20(12), 4445–4453 (1985)CrossRefGoogle Scholar
  31. A.B. Seddon, W.A. Shah: Chemical durability of infrared transmitting CdF2-BaCl2 and CdF2-BaCl2-NaCl glasses, J. Non-Cryst. Solids 128(2), 183–190 (1991)CrossRefGoogle Scholar
  32. G. Zhang, B. Friot, M. Poulain: New gallium and indium based fluoride glasses, J. Non-Cryst. Solids 213/214, 6–10 (1997)CrossRefGoogle Scholar
  33. B.J. Costa, A. Soufiane, Y. Messaddeq: New compositions of fluoroindate glasses with higher chemical resistance, Quim. Nova 21(3), 370–371 (1998)CrossRefGoogle Scholar
  34. G. Yanyan, G. Guojun, L. Ming, H. Lili, Z. Junjie: Er3+-doped fluoro-tellurite glass: A new choice for 2.7-\(\upmu\)m lasers, Mater. Lett. 80, 56–58 (2012)CrossRefGoogle Scholar
  35. H.E. Stockinger (Ed.): Beryllium: Its Industrial Hygiene Aspects (Academic, New York 1966)Google Scholar
  36. T. Ashida, A. Olada, T. Wakasugi, K. Jadono: Glass formation and properties of glasses based on Ga2S3-Sb2S3 systems incorporated with CsX (X = Cl, Br, I) and AgCl, J. Ceram. Soc. Jpn. 126(6), 452–461 (2018)CrossRefGoogle Scholar
  37. C. Struebing, M.B. Beckert, J.H. Nadler, B. Kahn, B. Wagner, Z. Kang: Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy, J. Am. Ceram. Soc. 101(3), 1116–1121 (2018)CrossRefGoogle Scholar
  38. X. Huang, Q. Jiao, C. Lin, T. Xu, H. Ma, X. Zhang, S. Dai: Compositional dependence of the optical properties of novel Ga-Sb-S-XI (XI = PbI2, CsI, AgI) infrared chalcogenide, J. Am. Ceram. Soc. 101(2), 749–755 (2018)CrossRefGoogle Scholar
  39. H. Okamoto, K. Kasuga, Y. Kubota, N. Nishimura, H. Kawamoto, K. Miyauchi, Y. Shimotsuma, K. Miura: White emission of Yb2+: Fluoride glasses efficiently excited with near-UV light, Opt. Express 21(19), 22043–22052 (2013)CrossRefGoogle Scholar
  40. T. Suzuki, Y. Iwata, K. Nogata, S. Mizuno, H. Ito, K. Hasegawa, Y. Ohishi: Optical characterization of Er-doped glasses for solar-pumped laser applications, Proc. SPIE 8621, 86211G-1 (2013)CrossRefGoogle Scholar
  41. M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J.N. Coulon, A. Braud, J.-L. Adam, V. Nazabal: Optical amplification of Pr3+–doped ZBLA channel waveguides for visible laser emission, Opt. Express 20(22), 25064–25070 (2012)CrossRefGoogle Scholar
  42. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, A. Speghini: Spectroscopic properties of rare earth ions in heavy metal oxide and phosphate containing glassses, Proc. SPIE 3622, 19–30 (1999)CrossRefGoogle Scholar
  43. A. Florez, S.L. Oliveira, M. Florez, L.A. Gomez, L.A.O. Nunes: Spectroscopic characterization of Ho3+ ion–doped fluoride glass, J. Alloy. Compd. 418(1/2), 238–242 (2006)CrossRefGoogle Scholar
  44. J.D. Mackenzie, J. Heo: Chalochalide glasses. I. Synthesis and properties of Ge-S-Br and Ge-S-I glasses, J. Non-Cryst. Solids 111, 29–35 (1989)CrossRefGoogle Scholar
  45. J.S. Sanghera, J. Heo, J.D. Mackenzie: Chalcohalide glasses, J. Non-Cryst. Solids 103, 155–178 (1988)CrossRefGoogle Scholar
  46. W.H. Zachariesen: The structure of network glasses, J. Am. Chem. Soc. 545, 3480 (1932)Google Scholar
  47. A.C. Wright, A.G. Clare, G. Etherington, R.N. Sinclair, S.A. Brawer, M.J. Weber: A neutron diffraction and molecular dynamics investigation of the structure of vitreous beryllium fluoride, J. Non-Cryst. Solids 111, 139–152 (1989)CrossRefGoogle Scholar
  48. A.G. Clare, A.C. Wright, R.N. Sinclair: A comparison of the structural role of Na+ network modifying cations in sodium silicate and sodium fluoroberyllate glasses, J. Non-Cryst. Solids 213/214, 321–324 (1997)CrossRefGoogle Scholar
  49. W. Vogel: Chemistry of Glass (The American Ceramic Society, Westerville 1985)Google Scholar
  50. J.E. Shelby: Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, Cambridge 2005)Google Scholar
  51. W. Vogel, K. Gerth: Über Modellsilikatgläser und ihre Konstitution. Die Glassysteme LiF-BeF2, NaF-BeF2, KF-BeF2 und RbF-BeF2, Glastech. Ber. 31(1), 15–28 (1958)Google Scholar
  52. W. Vogel, K. Gerth: Zur Struktur von Fluoridgläsern. II. Teil. Die Glassysteme MgF2-BeF2, CaF2-BeF2 und SrF2-BeF2, Silikattechnik 9(8), 353–358 (1958)Google Scholar
  53. P. Klocek, M. Roth, R.D. Rock: Chalcogenide glass optical fibers and image bundles: Properties and applications, Opt. Eng. 26(2), 88–95 (1987)CrossRefGoogle Scholar
  54. M.J. Weber, C.F. Cline, W.L. Smith, D. Milam, D. Heiman, R.W. Hellwarth: Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses, Appl. Phys. Lett. 32(7), 403–405 (1978)CrossRefGoogle Scholar
  55. M.J. Weber: Handbook of Optical Materials (CRC, Boca Raton 2003) p. 241Google Scholar
  56. A.G. Pincus: Glass compositions and method of making same, US Patent 2901363 (1959)Google Scholar
  57. C.M. Baldwin, J.D. Mackenzie: Preparation and properties of water-free vitreous beryllium fluoride, J. Non-Cryst. Solids 31, 441–445 (1979)CrossRefGoogle Scholar
  58. N.A. Bell: Beryllium halides and pseudohalides, Adv. Inorg. Chem. Radiochem. 14, 255 (1972)CrossRefGoogle Scholar
  59. J. Schroeder: Examples from fluorine chemistry and possible industrial applications, Philips Tech. Rev. 26, 111 (1965)Google Scholar
  60. C.E. Smith, R.K. Brow, L. Montagne, B. Revel: The structure and properties of zinc aluminophosphate glasses, J. Non-Cryst. Solids 386, 105–114 (2014)CrossRefGoogle Scholar
  61. J. Massera, K. Bourhis, L. Petit, M. Couzi, L. Hupa, M. Hupa, J.J. Videau, T. Cardinal: Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions, J. Phys. Chem. Solids 74(1), 121–127 (2013)CrossRefGoogle Scholar
  62. B.G. Aitken, G.H. Beall, J.E. Dickinson: Cuprous pyrophosphate glasses, US Patent 55299 (1996)Google Scholar
  63. A.A. Margaryan: Hydrolytic durability of fluoroberyllate glasses with additions of rare-earth fluorides, Arm. Khim. Zh. 20(4), 270–273 (1967)Google Scholar
  64. A.A. Margaryan: Some properties of glasses synthesized on the base of berillium fluoride. In: Stekloobraz. Sist. Nov. Stekl. Osn. Moskva (1971) pp. 300–303Google Scholar
  65. T. Izumitani, R. Terai, H. Hamamura: On the durability of the glass containing fluorides to water, Bull. Osaka Ind. Res. Inst. 7(4), 225–231 (1956)Google Scholar
  66. T. Izumitani, T. Yamashita, M. Tokida, K. Miura, H. Tajima: New fluoroaluminate glasses and their crystallization tendencies and physical-chemical properties, Mater. Sci. Forum 19/20(I), 19–26 (1987)CrossRefGoogle Scholar
  67. Y. Chunlei, Z. Junjie, W. Guonian, J. Zhonghong: Effects of chloride substitution on the chemical and physical properties and the crystallization behavior in heavy metal fluoride glasses, J. Alloy. Compd. 461(1/2), 378–381 (2008)Google Scholar
  68. J. Kai, Y. Lin, L. Wuju, Y. Qihua: Study on preparation and properties of AlF3-REF3-AEF2 glass system. In: Proc. XVIIth Int. Congr. Glass, Beijing, Vol. 5 (1995) pp. 698–703Google Scholar
  69. J.J. Cheng, M.Y. Liu: Formation and properties of ZrF4-BaF2-SrF2(CaF2)-LaF3 system glasses, Mater. Sci. Forum 67/68, 91–96 (1991)CrossRefGoogle Scholar
  70. A.B. Seddon, W.A. Shah: Aqueous corrosion of halide glasses, Mater. Sci. Forum 32/33, 255–260 (1988)CrossRefGoogle Scholar
  71. A.B. Seddon, W.A. Shah, A.G. Clare, J.M. Parker: The effect of NaF on the crystallization of ZBLAN glasses, Mater. Sci. Forum 19/20(2), 465–474 (1987)CrossRefGoogle Scholar
  72. G.H. Frischat, I. Overbeck: Chemical durability of fluorozirconate glasses against aqueous solution, Mater. Sci. Forum 5, 299–304 (1985)CrossRefGoogle Scholar
  73. C.J. Simmons: Chemical durability of fluoride glasses: III. The effect of solution pH, J. Am. Ceram. Soc. 70(9), 654–661 (1987)CrossRefGoogle Scholar
  74. C.J. Simmons, J. Guery, D.G. Chen, C. Jacoboni: Leaching behavior of heavy metal fluoride glasses, Mater. Sci. Forum 5, 329–334 (1985)CrossRefGoogle Scholar
  75. D. Ravaine, G. Perera: Corrosion studies of various heavy-metal fluoride glasses in liquid water: Application to fluoride-ion-selective electrode, J. Am. Ceram. Soc. 69(12), 852–857 (1986)CrossRefGoogle Scholar
  76. A. Elyamani, M. Poulain, S.J. Saggese, G.H. Sigel: Properties of chlorofluorozirconate glasses, J. Non-Cryst. Solids 119(2), 187–194 (1990)CrossRefGoogle Scholar
  77. A. Soufiane, M. Poulain: Influence of composition on glass properties in the quaternary system ZrF4-BaF2-ThF4-AlF3, J. Non-Cryst. Solids 140(1–3), 62–68 (1992)CrossRefGoogle Scholar
  78. J.M. Parker, A.B. Seddon, G.N. Ainsworth, A.G. Clare: Crystallisation studies in the ZrF4-BaF2-NaF system, Phys. Chem. Glasses 27, 219 (1986)Google Scholar
  79. J.M. Parker, A.G. Clare, A.B. Seddon: Crystallisation studies of fluorozirconate glasses, Mater. Sci. Forum 5, 257–262 (1986)Google Scholar
  80. J.M. Parker, A.B. Seddon, A.G. Clare: Crystallisation studies in the ZrF4-BaF2AlF3-LaF3-NaF system, Phys. Chem. Glasses 28, 4 (1987)Google Scholar
  81. S.F. Carter, P.W. France, M.W. Moore, J.M. Parker, A.G. Clare: The crystallisation of a ZrF4-BaF2-LaF3-AlF3-NaF-PbF2 core glass for infrared fibers, Phys. Chem. Glasses 28, 188–195 (1987)Google Scholar
  82. D. Whittaker: The Preparation and Characterization of Fluoroaluminate Glasses Doped with Transition Metal and Rare Earth Ions, Ph.D. Thesis (Alfred University, Alfred 1991)Google Scholar
  83. A. Kucuk, A.G. Clare: Optical properties of cerium and europium doped fluoroaluminate glasses, Opt. Mater. 13, 279–287 (1999)CrossRefGoogle Scholar
  84. A.C. Wright, A.G. Clare, G. Etherington, R.N. Sinclair, S.A. Brawer, M.J. Weber: The structure of vitreous NaF-DyF3-BeF2: A neutron diffraction and molecular dynamics study, Mat. Sci. Forum 19/20, 157–160 (1987)CrossRefGoogle Scholar
  85. V. Fortin, M. Bernier, J. Carrier, R. Valee: Fluoride glass Raman fiber laser at 2185 nm, Opt. Lett. 36(21), 4152–4154 (2011)CrossRefGoogle Scholar
  86. S. Ohe: Computer Aided Data Book of Vapor Pressure (Data Book, Tokyo 1976)Google Scholar
  87. M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, A.N. Syverud: JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985)Google Scholar
  88. S. Cantor: Vapor pressures of BeF2 and NiF2, J. Chem. Eng. Data 10, 237 (1965)CrossRefGoogle Scholar
  89. S. Cantor, R. Newton, W. Grimes, F. Blankenship: Vapor pressures and derived thermodynamic information for the system RbF-ZrF4, J. Phys. Chem. 62(1), 96–99 (1958)CrossRefGoogle Scholar
  90. K.A. Sense, M.J. Snyder, J.W. Clegg: Vapor Pressures of Beryllium Fluoride and Zirconium Fluoride (US Atomic Energy Commission Technical Information Services, Tennessee 1953)Google Scholar
  91. K.A. Sense, M.J. Snyder, R.B.J. Filbert: The vapor pressure of zirconium fluoride, J. Phys. Chem. 58(11), 995–996 (1954)CrossRefGoogle Scholar
  92. M. Benedict, T.H. Pigfors, H.W. Levi: Nuclear Chemical Engineering (McGraw-Hill, New York 1981)Google Scholar
  93. Y. Koreneo, I. Sorokin, N. Chirina, A.V. Novoselo: Vapor-pressure of hafnium tetrafluoride, J. Inorg. Chem. 17(5), 1195 (1972)Google Scholar
  94. A. Weir: Artemis (Random House, New York 2017)Google Scholar
  95. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe: Prediction of loss minima in infrared optical fibers, Electron. Lett. 17(21), 776 (1981)CrossRefGoogle Scholar
  96. X. Zhu, N. Peyghambarian: High-power ZBLAN glass fiber lasers: Review and prospect, Adv. Optoelectron. (2010),  https://doi.org/10.1155/2010/501956CrossRefGoogle Scholar
  97. T. Qir, L. Li, A. Schulzgen, V.L. Temyanko, T. Luo, S. Jiang, A. Mafi, J.V. Moloney, N. Peyghambarian: Generation of 9.3-W multimode and 4-W single–mode output from 7-cm short fiber lasers, IEEE Photonic Technol. Lett. 16(12), 2592–2594 (2004)CrossRefGoogle Scholar
  98. A. Schulzgen, L. Li, V.L. Temyanko, S. Suzuki, J.V. Moloney, N. Peyghambarian: Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber, Opt. Express 14(16), 7087–7092 (2006)CrossRefGoogle Scholar
  99. R.E. Slusher, G. Lenz, J. Holdin, J. Sanghera, L.B. Shaw, I.D. Aggarwal: Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Opt. Soc. Am. B 21(6), 1146–1155 (2004)CrossRefGoogle Scholar
  100. J.S. Sanghera, I.D. Aggarwal, L.B. Shaw, C.M. Florea, P. Pureza, V.Q. Nguyen, F. Kung, D. Gibson, I.D. Aggarwal: Nonlinear properties of chalcogenide glass fibers, J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006)Google Scholar
  101. X. Jiang, N.Y. Joly, M.A. Finger, F. Babic, G.K.L. Wong, J.C. Travers, P.S.J. Russell: Deep–ultraviolet to mid–infrared supercontinuum generated in solid–core ZBLAN photonic crystal fibre, Nat. Photonics 9(2), 133–139 (2015)CrossRefGoogle Scholar
  102. E.P. Schartner, A. Dowler, H. Ebendorff-Heidepriem: Fabrication of low-loss, small-core exposed core microstructured optical fibers, Opt. Mater. Express 7(5), 496–1502 (2017)CrossRefGoogle Scholar
  103. C. Xia, M. Kumar, O.P. Kulkarni, M.N. Islam, F.L. Terry, M.J. Freeman, M. Poulain, G. Mazé: Mid–infrared supercontinuum generation to 4.5 \({\upmu}\)m in ZBLAN fluoride fibers by nanosecond diode pumping, Opt. Lett. 31(17), 2553–2555 (2006)CrossRefGoogle Scholar
  104. M.C. Brierley, P.W. France: Neodymium–doped fluorozirconate fiber laser, Electron. Lett. 23(16), 815–817 (1987)CrossRefGoogle Scholar
  105. X. Zhu, R. Jain: 10-W-level diode-pumped compact 2.78 \(\upmu\)m ZBLAN fiber laser, Opt. Lett. 32(1), 26–28 (2007)CrossRefGoogle Scholar
  106. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe: Liquid-cooled 24 W mid–infrared Er:ZBLAN fiber laser, Opt. Lett. 34(20), 3062–3064 (2009)CrossRefGoogle Scholar
  107. M. Pollnau, C. Ghisler, W. Luthy, H.P. Weber, J. Schneider, U.B. Unrau: Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 \({\upmu}\)m, Opt. Lett. 22(9), 612–614 (1997)CrossRefGoogle Scholar
  108. H. Yanagita, I. Masuda, T. Yamashita, H. Toratani: Diode laser pumped Er3+ fibre laser operation between 2.7/2.8 \({\upmu}\)m, Electron. Lett. 26(22), 1836–1838 (1990)CrossRefGoogle Scholar
  109. B. Srinivasan, J. Tafoya, R.K. Jain: High-power Watt-level CW operation of diode-pumped 2.7 \({\upmu}\)m fiber lasers using efficient cross-relaxation and energy transfer mechanisms, Opt. Express 4(12), 490–495 (1999)CrossRefGoogle Scholar
  110. X. Zhu, R. Jain: Compact 2 W wavelength-tunable Er:ZBLAN mid–infrared fiber laser, Opt. Lett. 32(16), 2381–2383 (2007)CrossRefGoogle Scholar
  111. X. Zhu, R. Jain: Watt–level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7/2.8 \(\upmu\)m avelength range, Opt. Lett. 33(14), 1578–1580 (2008)CrossRefGoogle Scholar
  112. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe: Liquid-cooled 24 W mid–infrared Er:ZBLAN fiber laser, Opt. Lett. 34(20), 3062–3064 (2009)CrossRefGoogle Scholar
  113. M. Pollnau, S.D. Jackson: Erbium 3-\(\upmu\)m fiber lasers, IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001)CrossRefGoogle Scholar
  114. M. Pollnau, S.D. Jackson: Energy recycling versus lifetime quenching in erbium-doped 3-\({\upmu}\)m fiber lasers, IEEE J. Quantum Electron. 38(2), 162–169 (2002)CrossRefGoogle Scholar
  115. S.D. Jackson: Continuous wave 2.9 \({\upmu}\)m dysprosium-doped fluoride fiber laser, Appl. Phys. Lett. 83(7), 1316–1318 (2003)CrossRefGoogle Scholar
  116. Z. Meng, J. Kamebayashi, M. Higashihata, Y. Nakata, T. Okada, Y. Kubota, N. Nishimura, T. Teshima: 1.55-\(\upmu\)m Ce-Er-ZBLAN fiber laser operation under 980-nm pumping: Experiment and simulation, IEEE Photonics Technol. Lett. 14(5), 609–611 (2002)CrossRefGoogle Scholar
  117. C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, H.P. Weber: Up-conversion cascade laser at 1.7 \(\upmu\) with simultaneous 2.7 \(\upmu\)m lasing in erbium ZBLAN fibre, Electron. Lett. 31(5), 373–374 (1995)CrossRefGoogle Scholar
  118. H. Toebben: Room temperature CW fibre laser at 3.5 \({\upmu}\)m in Er3+–doped ZBLAN glass, Electron. Lett. 28(14), 1361–1362 (1992)CrossRefGoogle Scholar
  119. S.D. Jackson: 8.8 W diode-cladding-pumped Tm3+, Ho3+ doped fluoride fibre laser, Electron. Lett. 37(13), 821–822 (2001)CrossRefGoogle Scholar
  120. S.D. Jackson: Single-transverse-mode 2.5–W holmium-doped fluoride fiber laser operating at 2.86 \({\upmu}\)m, Opt. Lett. 29(4), 334–336 (2004)CrossRefGoogle Scholar
  121. C. Carbonnier, H. Tobben, U.B. Unrau: Room temperature CW fibre laser at 3.22 \(\upmu\)m, Electron. Lett. 34(9), 893–894 (1998)CrossRefGoogle Scholar
  122. J. Schneider, C. Carbonnier, U.B. Unrau: Characterization of a Ho3+–doped fluoride fiber laser with a 3.9-\({\upmu}\)m emission wavelength, Appl. Opt. 36(33), 8595–8600 (1997)CrossRefGoogle Scholar
  123. T. Komukai, Y. Fukasaku, T. Sugawa, Y. Miyajima: Highly efficient and tunable Nd3+ doped fluoride fibre laser operating in 1.3 \({\upmu}\)m band, Electron. Lett. 29(9), 755–756 (1993)CrossRefGoogle Scholar
  124. Y. Durteste, M. Monerie, J.Y. Allain, H. Poignant: Amplification and lasing at 1.3 \({\upmu}\)m in praseodymium-doped fluorozirconate fibres, Electron. Lett. 27(8), 626–628 (1991)CrossRefGoogle Scholar
  125. G. Androz, M. Bernier, D. Faucher, R. Vallee: 2.3 W single transverse mode thulium–doped ZBLAN fiber laser at 1480 nm, Opt. Express 16(20), 16019–16031 (2008)CrossRefGoogle Scholar
  126. M. Eichhorn, S.D. Jackson: Comparative study of continuous wave Tm3+–doped silica and fluoride fiber lasers, Appl. Phys. B 90(1), 35–41 (2008)CrossRefGoogle Scholar
  127. R. Allen, L. Esterowitz: CW diode pumped 2.3 \({\upmu}\)m fiber laser, Appl. Phys. Lett. 55(8), 721–722 (1989)CrossRefGoogle Scholar
  128. S. Ferber, V. Gaebler, H.-J. Eichler: Violet and blue upconversion-emission from erbium–doped ZBLAN-fibers with red diode laser pumping, Opt. Mater. 20(3), 211–215 (2002)CrossRefGoogle Scholar
  129. J.Y. Allain, M. Monerie, H. Poignant: Tunable green upconversion erbium fibre laser, Electron. Lett. 28(2), 111–113 (1992)CrossRefGoogle Scholar
  130. D.S. Funk, J.G. Eden: Laser diode-pumped holmium-doped fluorozirconate glass fiber laser in the green (\(\lambda\approx\) 544–549 nm): Power conversion efficiency, pump acceptance bandwidth, and excited-state kinetics, IEEE J. Quantum Electron. 37(8), 980–992 (2001)CrossRefGoogle Scholar
  131. D.S. Funk, J.W. Carlson, J.G. Eden: Ultraviolet (381 nm), room temperature laser in neodymium-doped fluorozirconate fibre, Electron. Lett. 30(22), 1859–1860 (1994)CrossRefGoogle Scholar
  132. H. Zellmer, P. Riedel, A. Tunnermann: Visible upconversion lasers in praseodymium-ytterbium-doped fibers, Appl. Phys. B 69(5), 417–421 (1999)CrossRefGoogle Scholar
  133. M. Zeller, H.G. Limberger, T. Lasser: Tunable Pr3+–Yb3+–doped all–fiber upconversion laser, IEEE Photonics Technol. Lett. 15(2), 194–196 (2003)CrossRefGoogle Scholar
  134. P. Xie, T.R. Gosnell: Room–temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions, Opt. Lett. 20, 1014–1016 (1995)CrossRefGoogle Scholar
  135. T. Sandrock, H. Scheife, E. Heumann, G. Huber: High-power continuous–wave upconversion fiber laser at room temperature, Opt. Lett. 22(11), 808–810 (1997)CrossRefGoogle Scholar
  136. R.M. El-Agmy: Upconversion CW laser at 284 nm in a Nd:YAG-pumped double-cladding thulium-doped ZBLAN fiber laser, Laser Phys. 18(6), 803–806 (2008)CrossRefGoogle Scholar
  137. G. Qin, S. Huang, Y. Feng, A. Shirakawa, K.-I. Ueda: Multiple-wavelength up-conversion laser in Tm3+–doped ZBLAN glass fiber, IEEE Photonics Technol. Lett. 17(9), 1818–1820 (2005)CrossRefGoogle Scholar
  138. R. Paschotta, N. Moore, W.A. Clarkson, A.C. Tropper, D.C. Hanna, G. Maze: 230 mW of blue light from a thulium-doped upconversion fiber laser, IEEE J. Sel. Top. Quantum Electron. 3(4), 1100–1102 (1997)CrossRefGoogle Scholar
  139. M.P. Le Flohic, J.Y. Allain, G.M. Stéphan, G. Mazé: Room-temperature continuous-wave upconversion laser at 455 nm in a Tm3+ fluorozirconate fiber, Opt. Lett. 19(23), 1982–1984 (1994)CrossRefGoogle Scholar
  140. C.L. Hagen, J.W. Walewski, S.T. Sanders: Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source, IEEE Photonics Technol. Lett. 18(1), 91–93 (2006)CrossRefGoogle Scholar
  141. F.G. Omenetto, N.A. Wolchover, M.R. Wehner, M. Ross, A. Efimov, A.J. Taylor, V.V.R.K. Kumar, A.K. George, J.C. Knight, N.Y. Joly, P.S.J. Russel: Spectrally smooth supercontinuum from 350 nm to 3 \(\upmu\)m in sub-centimeter lengths of soft–glass photonic crystal fibers, Opt. Express 14(11), 4928–4934 (2006)CrossRefGoogle Scholar
  142. J.H.V. Price, T.M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J.Y.Y. Leong, P. Petropoulos, J.C. Flanagan, G. Brambilla, X. Feng, D.J. Richardson: Mid-IR supercontinuum generation from nonsilica microstructured optical fibers, IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007)CrossRefGoogle Scholar
  143. P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto: Over 4000 nm bandwidth of mid–IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Opt. Express 16(10), 7161–7168 (2008)CrossRefGoogle Scholar
  144. V.F. Sears: Neutron scattering lengths and cross sections, Neutron News 3(3), 29–37 (1992)CrossRefGoogle Scholar
  145. S. Aasland, T. Grande: Structure of fluorozirconate glasses and melts, Glass Pap. 52(1), 21–28 (1988)Google Scholar
  146. Y. Tian, T. Wei, X. Jing, J. Zheng, S. Xu: Enhanced 2.7 and 2.9 mm emission in Er3+/Ho3+ doped fluoride glass sensitized by Pr3, Mater. Res. Bull. 76, 67–73 (2016)CrossRefGoogle Scholar
  147. J.K. Christie, A. Pedone, M.C. Menziani, A. Tilocca: Fluorine environment in bioactive glasses: Ab initio molecular dynamics simulations, J. Phys. Chem. B 115(9), 2038–2045 (2011)CrossRefGoogle Scholar
  148. M.F. Ding, J. Lau, J.D. Mackenzie: Halide glasses based on chlorides bromides and iodides, J. Non-Cryst. Solids 80, 538–452 (1986)CrossRefGoogle Scholar
  149. J.A. Duffy, M.D. Ingram: Zinc bromide glass, J. Non-Cryst. Solids 58, 43–144 (1983)CrossRefGoogle Scholar
  150. K. Kadono, S. Shinomura, H. Kinugare, H. Tanaka: Preparation and vibrational spectroscopy of ZnI2-based glasses, J. Non-Cryst. Solids 116, 33–38 (1990)CrossRefGoogle Scholar
  151. K. Kadono, H. Kageyama, N. Kamijio, H. Tanaka: Structure of zinc halide based glasses, J. Non-Cryst. Solids 140, 98–102 (1992)CrossRefGoogle Scholar
  152. L.F. Santos, R.M. Almeida: Short and medium range order in zinc halide based glasses, J. Non-Cryst. Solids 232–234, 150–158 (1998)Google Scholar
  153. H.-T. Sun, J. Zhou, J. Qiu: Recent advances in bismuth activated photonic materials, Prog. Mater. Sci. 64, 1–72 (2014)CrossRefGoogle Scholar
  154. E.I. Cooper, C.A. Angell: Far IR transmitting cadmium iodide based glasses, J. Non-Cryst. Solids 56, 75–80 (1983)CrossRefGoogle Scholar
  155. M. Guignard, V. Nazabal, A. Moreau, S. Cherukulappurath, G. Boudebs, H. Zeglache, G. Martinelli, Y. Quiquempois, F. Smektala, J.-L. Adam: Optical and structural properties of new chalcohalide glasses, J. Non-Cryst. Solids 354, 1322–1326 (2008)CrossRefGoogle Scholar
  156. J. Heo, J.K. Park, Y.S. Kim: Infrared transmitting Cd-As-Ge I glasses, J. Non-Cryst. Solids 175, 204–210 (1994)CrossRefGoogle Scholar
  157. F. Gan: Structure, properties and applications of chalcohalide glasses, J. Non-Cryst. Solids 140, 184–193 (1992)CrossRefGoogle Scholar
  158. K. Kadono, K. Mitani, M. Yamashita, H. Tanaka, Y. Kawamoto, K. Ohniro, R. Kano: Ionic conduction in Li-X based and Cu-X based glasses (X = Cl, Br, I), J. Non-Cryst. Solids 140, 103–106 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexis G. Clare
    • 1
  • Peter F. Wachtel
    • 2
  • J. David Musgraves
    • 3
    Email author
  1. 1.Center for Advanced Ceramic TechnologyAlfred UniversityAlfred, NYUSA
  2. 2.Rochester Precision Optics, LLCWest Henrietta, NYUSA
  3. 3.Rochester Precision Optics, LLCWest Henrietta, NYUSA

Personalised recommendations