Phosphate Glasses

  • Francisco MuñozEmail author
  • Jean Rocherullé
  • Ifty Ahmed
  • Lili Hu
Part of the Springer Handbooks book series (SHB)


This chapter is dedicated to the study of phosphate glasses, from their fundamental aspects to their most relevant applications today. \(\mathrm{P_{2}O_{5}}\)-based glasses have experienced a continuously increasing number of published works in the last decades and still they possess a bright potential. Their sometimes intricate structure has made their study a quite relevant field for the glass science community, which attracts more and more researchers. In addition, the associated difficulties in their preparation on a large scale have led to the development of specific methods, such as those used for the melting of Nd-laser glasses. They are particularly known to have a low chemical durability, though the progress in the optimization of their composition demonstrates that can be very competitive and, in this respect, we will also pay attention to the improvement of their properties as a result of their nitridation. The structure and main physicochemical properties of phosphate glasses will be reviewed, highlighting the most relevant and well-known applications existing nowadays, such as sealing and laser glasses, biomedical glasses, and solid electrolytes or for the storage of wastes.



F. Muñoz thanks funding from projects MAT2013-48246-C2-1-P from MINECO of Spain and I-link+0959 from CSIC. I. Ahmed would like to acknowledge the Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, for provision of studentship funds.


  1. 16.1
    W. Vogel: Glass Chemistry (Springer, Berlin, Heidelberg 1994)CrossRefGoogle Scholar
  2. 16.2
    N.N. Greenwood, A. Earnshaw: Chemistry of the Elements (Pergamon, Oxford 1984)Google Scholar
  3. 16.3
    V.M. Goldschmidt: Geochemische Verteilungsgesetze der Elemente, Skr. Nor. Videns. Akad. K1, 1; Mat. Naturvidensk. K1(8), 7–156 (1926)Google Scholar
  4. 16.4
    W.J. Zachariasen: The atomic arrangement in glass, J. Am. Ceram. Soc. 54, 3841–3851 (1932)Google Scholar
  5. 16.5
    A. Dietzel: Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Elektrochem. 48, 9–23 (1942)Google Scholar
  6. 16.6
    E. Thilo: Die Kondensierten Phosphate, Naturwissenschaften 46(11), 367–373 (1959)CrossRefGoogle Scholar
  7. 16.7
    J.R. Van Wazer: Phosphorus and its Compounds, Vol. I (Interscience, New York 1958)Google Scholar
  8. 16.8
    R.K. Brow, D.R. Tallant, J.J. Hudgens, S.W. Martin, A.D. Irwin: The short-range structure of sodium ultraphosphate glasses, J. Non-Cryst. Solids 177, 221–228 (1994)CrossRefGoogle Scholar
  9. 16.9
    U.W. Hoppe: A structural model for phosphate glasses, J. Non-Cryst. Solids 195, 138–147 (1996)CrossRefGoogle Scholar
  10. 16.10
    J.R. Jones, A.G. Clare: Bio-Glasses: An Introduction (Wiley, Chichester 2012)CrossRefGoogle Scholar
  11. 16.11
    M. Ren, S. Cai, W. Zhang, T. Liu, X. Wu, P. Xu, D. Wang: Preparation and chemical stability of CaO-P2O5-Na2O-B2O3 porous glass-ceramics, J. Non-Cryst. Solids 380, 78–85 (2013)CrossRefGoogle Scholar
  12. 16.12
    J.H. Campbell, J.S. Hayden, A. Marker: High power solid-state lasers: A laser glass perspective, Int. J. App. Glass Sci. 2(1), 3–29 (2011)CrossRefGoogle Scholar
  13. 16.13
    I. Ahmed, A.J. Parsons, G. Palmer, J.C. Knowles, G.S. Walker, C.D. Rudd: Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite, Acta Biomater 4, 1307–1314 (2008)CrossRefGoogle Scholar
  14. 16.14
    J.C. Knowles: Phosphate based glasses for biomedical applications, J. Mater. Chem. 13, 2395–2401 (2003)CrossRefGoogle Scholar
  15. 16.15
    I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles: Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system, Biomaterials 25, 501–507 (2004)CrossRefGoogle Scholar
  16. 16.16
    I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles: Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system, Biomaterials 25, 491–499 (2004)CrossRefGoogle Scholar
  17. 16.17
    K.M.Z. Hossain, M.S. Hassan, R. Felfel, I. Ahmed: Development of phosphate-based glass fibers for biomedical applications. In: Hot Topics in Biomaterials (Future Science, London 2014) pp. 104–115CrossRefGoogle Scholar
  18. 16.18
    M.J. Weber: Science and technology of laser glass, J. Non-Cryst. Solids 123, 208–222 (1990)CrossRefGoogle Scholar
  19. 16.19
    J.H. Campbell, T.I. Suratwala: Nd-doped phosphate glasses for high-energy/high-peak-power lasers, J. Non-Cryst. Solids 263/264, 318–341 (2000)CrossRefGoogle Scholar
  20. 16.20
    T.T. Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, J. Solis: Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass, Optics Lett. 38, 5248–5251 (2013)CrossRefGoogle Scholar
  21. 16.21
    J. del Hoyo, R. Martinez Vazquez, B. Sotillo, T.T. Fernandez, J. Siegel, P. Fernández, R. Osellame, J. Solis: Control of waveguide properties by tuning femtosecond laser induced compositional changes, App. Phys. Lett. 105, 131101 (2014)CrossRefGoogle Scholar
  22. 16.22
    N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, L. Canioni: Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography, Adv. Funct. Mater. 24, 5824–5832 (2014)CrossRefGoogle Scholar
  23. 16.23
    J.E. Shelby: Introduction of Glass Science and Technology, 2nd edn. (The Royal Society of Chemistry, Cambridge 2005)Google Scholar
  24. 16.24
    R. Morena: Phosphate glasses as alternatives to Pb-based sealing frits, J. Non-Cryst. Solids 263/264, 382–387 (2000)CrossRefGoogle Scholar
  25. 16.25
    M. Rajaram, D.E. Day: Preparation and properties of oxynitride phosphate glasses made from 27R2O·20BaO·3Al2O50P2O5, J. Non-Cryst. Solids 102, 173–180 (1988)CrossRefGoogle Scholar
  26. 16.26
    M. Duclot, J.-L. Souquet: Glassy materials for lithium batteries: Electrochemical properties and devices performances, J. Power Sources 97/98, 610–615 (2001)CrossRefGoogle Scholar
  27. 16.27
    T. Ishiyama, S. Suzuki, J. Nishii, T. Yamashita, H. Kawazoe, T. Omata: Proton conducting tungsten phosphate glass and its application in intermediate temperature fuel cells, Solid State Ion 262, 856–859 (2014)CrossRefGoogle Scholar
  28. 16.28
    T. Ishiyama, J. Nishii, T. Yamashita, H. Kawazoe, T. Omata: Electrochemical substitution of sodium ions with protons in phosphate glass to fabricate pure proton conducting glass at intermediate temperatures, J. Mater. Chem. A 2, 3940–3947 (2014)CrossRefGoogle Scholar
  29. 16.29
    S. Nakata, T. Togashi, T. Honma, T. Komatsu: Cathode properties of sodium iron phosphate glass for sodium ion batteries, J. Non-Cryst. Solids 450, 109–115 (2016)CrossRefGoogle Scholar
  30. 16.30
    X. Yu, J.B. Bates, G.E. Jellison Jr., F.X. Hart: A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144(2), 524–532 (1997)CrossRefGoogle Scholar
  31. 16.31
    X. Xu, Z. Wen, Z. Gu, X. Xu, Z. Lin: Lithium ion conductive glass-ceramics in the system Li1.4Al0.4(Ge1-xTix)1.6(PO4)3 (\(x=0-1.0\)), Solid State Ion. 171, 207–213 (2004)CrossRefGoogle Scholar
  32. 16.32
    S.T. Reis, M. Karabulut, D.E. Day: Structural features and properties of lead-iron-phosphate nuclear wasteforms, J. Nucl. Mater. 304, 87–95 (2002)CrossRefGoogle Scholar
  33. 16.33
    J.R. Van Wazer: Structure and properties of the condensed phosphates. II. A theory of the molecular structure of sodium phosphate glasses, J. Am. Chem. Soc. 72, 644–647 (1950)CrossRefGoogle Scholar
  34. 16.34
    E. Lippmaa, M. Maegi, A. Samoson, G. Engelhardt, A. Grimmer: Structural studies of silicates by solid-state high-resolution silicon-29 NMR, J. Am. Chem. Soc. 102(15), 4889–4893 (1980)CrossRefGoogle Scholar
  35. 16.35
    R.K. Brow: Review: The structure of simple phosphate glasses, J. Non-Cryst. Solids 263/264, 1–28 (2000)CrossRefGoogle Scholar
  36. 16.36
    B.H. Jung, D.N. Kim, H.-S. Kim: Properties and structure of (\(50-x\))BaO-xZnO-50P2O5 glasses, J. Non-Cryst. Solids 351, 3356–3360 (2005)CrossRefGoogle Scholar
  37. 16.37
    L. Muñoz-Senovilla, F. Muñoz: Behaviour of viscosity in metaphosphate glasses, J. Non-Cryst. Solids 385, 9–16 (2014)CrossRefGoogle Scholar
  38. 16.38
    S. Mamedov, D. Stachel, M. Soltwitsch, D. Quitmann: Local environment and dynamics of PO4 tetrahedra in Na-Al-PO3 glasses and melts, J. Chem. Phys. 123, 124515–124527 (2005)CrossRefGoogle Scholar
  39. 16.39
    R.J. Kirkpatrick, R.K. Brow: Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: A review, Solid State Nucl. Magn. Res. 5, 9–21 (1995)CrossRefGoogle Scholar
  40. 16.40
    R.K. Brow, D.R. Tallant, S.T. Myers, C.C. Phifer: The short-range structure of zinc polyphosphate glass, J. Non-Cryst. Solids 191, 45–55 (1995)CrossRefGoogle Scholar
  41. 16.41
    F. Muñoz, F. Agulló-Rueda, L. Montagne, R. Marchand, A. Durán, L. Pascual: Structure and properties of (25\(-x/2\))Li2O-(25\(-x/2\))Na2O-xPbO-50P2O5 metaphosphate glasses, J. Non-Cryst. Solids 347, 153–158 (2004)CrossRefGoogle Scholar
  42. 16.42
    T.M. Duncan, D.C. Douglass: On the 31P chemical shift anisotropy of condensed phosphates, Chem. Phys. 87, 339–349 (1984)CrossRefGoogle Scholar
  43. 16.43
    M. Feike, R. Graf, I. Schnell, C. Jäger, C.W. Spiess: Structure of crystalline phosphates from 31P Double-quantum NMR spectroscopy, J. Am. Chem. Soc. 118, 9631–9634 (1996)CrossRefGoogle Scholar
  44. 16.44
    P. Rajbhandari, Y. Chen, B. Doumert, L. Montagne, G. Tricot: Investigation of zinc alkali pyrophosphate glasses. Part II: Local and medium range orders analysed by 1-D/2-D NMR, Mat. Chem. Phys. 155, 23–29 (2015)CrossRefGoogle Scholar
  45. 16.45
    R. Witter, P. Hartmann, J. Vögel, C. Jäger: Measurements of chain length distributions in calcium phosphate glasses using 2-D 31P double quantum NMR, Solid State Nucl. Magn. Reson. 13, 189–200 (1998)CrossRefGoogle Scholar
  46. 16.46
    F. Fayon, G. Le Saout, L. Emsley, D. Massiot: Through-bond phosphorus-phosphorus connectivities in crystalline and disordered phosphates by solid-state NMR, Chem. Commun. 2(16), 1702–1703 (2002)CrossRefGoogle Scholar
  47. 16.47
    F. Fayon, I.J. King, R.K. Harris, J.S.O. Evans, D. Massiot: Application of the through-bond correlation NMR experiment to the characterization of crystalline and disordered phosphates, C. R. Chim. 7, 351–361 (2004)CrossRefGoogle Scholar
  48. 16.48
    J. Ren, H. Eckert: Applications of DQ-DRENAR for the structural analysis of phosphate glasses, Solid State Nucl. Magn. Reson. 72, 140–147 (2015)CrossRefGoogle Scholar
  49. 16.49
    P. Guerry, M.E. Smith, S.P. Brown: 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: Revealing J coupling and chemical shift two-dimensional correlations in disordered solids, J. Am. Chem. Soc. 131, 11861–11874 (2009)CrossRefGoogle Scholar
  50. 16.50
    M. Lahaye, B. Doumert, B. Revel, K.B. Tayeb, H. Vezin, G. Tricot: Application of magnetic resonance spectroscopies to the xZnO-(100-x)NaPO3 Glass System: Glass network organization and effect of Co2+ doping, J. Phys. Chem. C 119, 17288–17297 (2015)CrossRefGoogle Scholar
  51. 16.51
    F. Moreau, A. Durán, F. Muñoz: Structure and properties of high Li2O-containing aluminophosphate glasses, J. Eur. Ceram. Soc. 29, 1895–1902 (2009)CrossRefGoogle Scholar
  52. 16.52
    L. Van Wüllen, G. Tricot, S. Wegner: An advanced NMR protocol for the structural characterization of aluminophosphate glasses, Solid State Nucl. Mag. Reson. 32, 44–52 (2007)CrossRefGoogle Scholar
  53. 16.53
    F. Muñoz, L. Montagne, L. Pascual, A. Durán: Composition and structure effects on the properties of lithium borophosphate glasses showing boron anomaly, J. Non-Cryst. Solids 355, 2571–2577 (2009)CrossRefGoogle Scholar
  54. 16.54
    M. Zeyer, L. Montagne, V. Kostoj, G. Palavit, D. Prochnow, C. Jaeger: 17O nuclear magnetic resonance study of Na2O-P2O5 glasses, J. Non-Cryst. Solids 311, 223–232 (2002)CrossRefGoogle Scholar
  55. 16.55
    A. Flambard, L. Montagne, L. Delevoye: A new 17O-isotopic enrichment method for the NMR characterisation of phosphate compounds, Chem. Commun. 3426–3428 (2006)Google Scholar
  56. 16.56
    A. Flambard, L. Montagne, L. Delevoye, G. Palavit, J.-P. Amoreaux, J.-J. Videau: Solid-state NMR study of mixed-network sodium-niobium phosphate glasses, J. Non-Cryst. Solids 345/346, 75–79 (2004)CrossRefGoogle Scholar
  57. 16.57
    R.E. Dinnebier, S.J.L. Billingue (Eds.): Powder Diffraction: Theory and Practice (Royal Society of Chemistry, Cambridge 2008)Google Scholar
  58. 16.58
    U. Hoppe, G. Walter, R. Kranold, D. Stachel: Structural specifics of phosphate glasses probed by diffraction methods: A review, J. Non-Cryst. Solids 263/264, 29–47 (2000)CrossRefGoogle Scholar
  59. 16.59
    Y. Waseda: The Structure of Non-Crystalline Materials (McGraw-Hill, New York 1980)Google Scholar
  60. 16.60
    U. Hoppe, D. Stachel, D. Beyer: Oxygen coordination of metal ions in phosphate and silicate glasses studied by a combination of x-ray and neutron diffraction, Phys. Scr. T57, 122–126 (1995)CrossRefGoogle Scholar
  61. 16.61
    E. Matsubara, K. Sugiyama, Y. Waseda, M. Ashizuka, E. Ishida: Structural analysis of zinc metaphosphate glass by anomalous x-ray scattering, J. Mater. Sci. Lett. 9, 14–16 (1990)CrossRefGoogle Scholar
  62. 16.62
    A. Balerna, M. Bionducci, A. Falqui, G. Licheri, C. Meneghini, G. Navarra, M. Bettinelli: A structural study of Sr metaphosphate glass by anomalous x-ray scattering and EXAFS spectroscopy, J. Non-Cryst. Solids 232/234, 607–612 (1998)CrossRefGoogle Scholar
  63. 16.63
    P.H. Gaskell, J. Zhao, P. Boden, P. Chieux: Structure of a copper sodium phosphate glass by neutron scattering with isotopic substitution, J. Non-Cryst. Solids 150, 80–86 (1992)CrossRefGoogle Scholar
  64. 16.64
    U. Hoppe, E. Metwalli, R.K. Brow, J. Neuefeind: High-energy x-ray diffraction study of La co-ordination in lanthanum phosphate glasses, J. Non-Cryst. Solids 297, 263–274 (2002)CrossRefGoogle Scholar
  65. 16.65
    U. Hoppe, D. Ilieva, J. Neuefeind: The structure of gallium phosphate glasses by high-energy x-ray diffraction, Z. Naturforsch. 57a, 709–715 (2002)CrossRefGoogle Scholar
  66. 16.66
    U. Hoppe, M. Karabulut, E. Metwalli, R.K. Brow, P. Jovari: The Fe–O coordination in iron phosphate glasses by x-ray diffraction with high energy photons, J. Phys. Condens. Matter. 15, 6143–6153 (2003)CrossRefGoogle Scholar
  67. 16.67
    U. Hoppe, R. Kranold, A. Ghosh, C. Landron, J. Neuefeind, P. Jovari: Environments of lead cations in oxide glasses probed by x-ray diffraction, J. Non-Cryst. Solids 328, 146–156 (2003)CrossRefGoogle Scholar
  68. 16.68
    U. Hoppe, Y. Dimitriev, P. Jovari: Structure of zinc phosphate glasses of 75 and 80 mol% ZnO content studied by x-ray diffraction and reverse Monte Carlo simulations, Z. Naturforsch. 60a, 517–526 (2005)Google Scholar
  69. 16.69
    U. Hoppe, R.K. Brow, B.C. Tischendorf, A. Kriltz, P. Jóvári, A. Schöps, A.C. Hannon: Structure of titanophosphate glasses studied by x-ray and neutron diffraction, J. Non-Cryst. Solids 353, 1802–1807 (2007)CrossRefGoogle Scholar
  70. 16.70
    U. Hoppe, G. Walter, A. Barz, D. Stachel, A.C. Hannon: The P–O bond lengths in vitreous P2O5 probed by neutron diffraction with high real-space resolution, J. Phys. Condens. Matter 10, 261–270 (1998)CrossRefGoogle Scholar
  71. 16.71
    K. Suzuki, M. Ueno: Experimental discrimination between bridging and non-bridging oxygen phosphorus bonds in P2O5-Na2O glass by pulsed neutron total scattering, J. Phys. 46(C8), 261–265 (1985)Google Scholar
  72. 16.72
    U. Hoppe, G. Walter, R. Kranold, D. Stachel: An x-ray diffraction study of the structure of vitreous P2O5, Z. Naturforsch. 53a, 93–94 (1998)Google Scholar
  73. 16.73
    R. Gresch, W. Müller-Warmuth, H. Dutz: X-ray photoelectron spectroscopy of sodium phosphate glasses, J. Non-Cryst. Solids 34, 127–136 (1979)CrossRefGoogle Scholar
  74. 16.74
    P. Losso, B. Schnabel, C. Jäger, U. Sternberg, D. Stachel, D.O. Smith: 31P NMR investigations of binary alkaline earth phosphate glasses of ultraphosphate composition, J. Non-Cryst. Solids 143, 265–273 (1992)CrossRefGoogle Scholar
  75. 16.75
    R.K. Brow, C.C. Phifer, G.L. Turner, R.J. Kirkpatrick: Cation effects on 31P MAS NMR chemical shifts of metaphosphate glasses, J. Am. Ceram. Soc. 74, 1287–1290 (1991)CrossRefGoogle Scholar
  76. 16.76
    G.N. Greaves, S.J. Gurman, L.F. Gladden, C.A. Spence, B.C. Sales, L.A. Boatner, R.N. Jenkins: A structural basis for the corrosion resistance of lead-iron-phosphate glasses: An x-ray absorption spectroscopy study, Philos. Mag. B 58, 271–283 (1988)CrossRefGoogle Scholar
  77. 16.77
    U. Hoppe, G. Walter, D. Stachel, A.C. Hannon: Short-range order details of metaphosphate glasses studied by pulsed neutron scattering, Z. Naturforsch. 50a, 684–692 (1995)Google Scholar
  78. 16.78
    U. Hoppe, G. Walter, D. Stachel, A.C. Hannon: Short-range order in KPO3 glass studied by neutron and x-ray diffraction, Z. Naturforsch. 51a, 179–186 (1996)CrossRefGoogle Scholar
  79. 16.79
    T. Uchino, Y. Ogata: Ab-initio molecular orbital calculations on the electronic structure of phosphate glasses. Binary alkali metaphosphate glasses, J. Non-Cryst. Solids 191, 56–70 (1995)CrossRefGoogle Scholar
  80. 16.80
    U. Hoppe, G. Walter, D. Stachel: The short range order of metaphosphate glasses investigated by x-ray diffraction, Phys. Chem. Glasses 33, 216–221 (1992)Google Scholar
  81. 16.81
    U. Hoppe, G. Walter, R. Kranold, D. Stachel, A. Barz: The dependence of structural peculiarities in binary phosphate glasses on their network modifier content, J. Non-Cryst. Solids 192/193, 28–31 (1995)CrossRefGoogle Scholar
  82. 16.82
    J.J. Hudgens, S.W. Martin: Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses, J. Am. Ceram. Soc. 76, 1691–1696 (1993)CrossRefGoogle Scholar
  83. 16.83
    J.J. Hudgens: The Structure and Properties of Anhydrous Alkali Ultra-Phosphate Glasses, Ph.D. Thesis (Iowa State Univ., Ames 1994)CrossRefGoogle Scholar
  84. 16.84
    U. Hoppe, R. Kranold, D. Stachel, A. Barz, A.C. Hannon: A neutron and x-ray diffraction study of the structure of the LaP3O9 glass, J. Non-Cryst. Solids 232–234, 44–50 (1998)CrossRefGoogle Scholar
  85. 16.85
    U. Hoppe, R. Kranold, D. Stachel, J. Neuefeind: Oxygen coordination of modifier cations in metaphosphate glasses probed by high energy x-ray diffraction, Phosphorus Res. Bull. 10, 546–551 (1999)CrossRefGoogle Scholar
  86. 16.86
    A. Musinu, G. Paschina, G. Piccaluga, G. Pinna: Short range order of metaphosphate glasses by x-ray diffraction, J. Non-Cryst. Solids 177, 97–102 (1994)CrossRefGoogle Scholar
  87. 16.87
    S.C. Moss, D.L. Price: Random packing of structural units and the first sharp diffraction peak in glasses. In: Physics of Disordered Materials, ed. by D. Adler, H. Fritzsche, S.R. Ovshinsky (Plenum, New York 1985) pp. 77–94CrossRefGoogle Scholar
  88. 16.88
    S.R. Elliott: Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses, J. Non-Cryst. Solids 182, 40–48 (1995)CrossRefGoogle Scholar
  89. 16.89
    P.H. Gaskell, D.J. Wallis: Medium-range order in silica, the canonical network glass, Phys. Rev. Lett. 76, 66–69 (1996)CrossRefGoogle Scholar
  90. 16.90
    G. Walter, U. Hoppe, T. Baade, R. Kranold, D. Stachel: Intermediate-range order in MeO-P2O5 glasses, J. Non-Cryst. Solids 217, 299–307 (1997)CrossRefGoogle Scholar
  91. 16.91
    K. Suzuya, D.L. Price, C.-K. Loong, S.W. Martin: Structure of vitreous P2O5 and alkali phosphate glasses, J. Non-Cryst. Solids 232– 234, 650–657 (1998)CrossRefGoogle Scholar
  92. 16.92
    K. Suzuya, D.L. Price, C.-K. Loong, S. Kohara: The structure of magnesium phosphate glasses, J. Phys. Chem. Solids 60, 1457–1460 (1999)CrossRefGoogle Scholar
  93. 16.93
    K. Suzuya, K. Itoh, A. Kajinami, C.-K. Loong: The structure of binary zinc phosphate glasses, J. Non-Cryst. Solids 345/346, 80–87 (2004)CrossRefGoogle Scholar
  94. 16.94
    H. Rietveld: A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  95. 16.95
    R.L. McGreevy, L. Pusztai: Reverse Monte Carlo simulation: A new technique for the determination of disordered structures, Mol. Simul. 1, 359–367 (1988)CrossRefGoogle Scholar
  96. 16.96
    R.L. McGreevy: Reverse Monte Carlo modelling, J. Phys. Condens. Matter 13, R877–R914 (2001)CrossRefGoogle Scholar
  97. 16.97
    B.J. Alder, T.E. Wainwright: Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459–466 (1959)CrossRefGoogle Scholar
  98. 16.98
    A.N. Cormack, Y. Cao: Molecular dynamics simulation of silicate glasses, Mol. Eng. 6, 183–227 (1996)CrossRefGoogle Scholar
  99. 16.99
    A.K. Soper: Test of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water, Mol. Phys. 99, 1503–1516 (2001)CrossRefGoogle Scholar
  100. 16.100
    A.K. Soper: Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement, Phys. Rev. B 72, 104204–104216 (2005)CrossRefGoogle Scholar
  101. 16.101
    K.M. Wetherall, D.M. Pickup, R.J. Newport, G. Mountjoy: The structure of calcium metaphosphate glass obtained from x-ray and neutron diffraction and reverse Monte Carlo modelling, J. Phys. Condens. Matter 21, 35109 (2009)CrossRefGoogle Scholar
  102. 16.102
    A. Tilocca: Models of structure, dynamics and reactivity of bioglasses: A review, J. Mater. Chem. 20, 6848–6858 (2010)CrossRefGoogle Scholar
  103. 16.103
    Y. Shaharyar, E. Wein, J.-J. Kim, R.E. Youngman, F. Muñoz, H.-W. Kim, A. Tiloccah, A. Goel: Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses, J. Mater. Chem. B 3, 9360–9373 (2015)CrossRefGoogle Scholar
  104. 16.104
    J.K. Christie, R.I. Ainsworth, N.H. de Leeuw: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses, Biomaterials 35, 6164–6171 (2014)CrossRefGoogle Scholar
  105. 16.105
    E.A. Ruben, M.S. Chapman, J.D. Evanseck: Hydrogen bonding mediated by chemical interactions determines hydration enthalpy differences of phosphate water clusters, J. Phys. Chem. A 111, 10804–10814 (2007)CrossRefGoogle Scholar
  106. 16.106
    F. Delahaye, L. Montagne, G. Palavit, J.C. Touray, P. Baillif: Acid dissolution of sodium-calcium metaphosphate glasses, J. Non-Cryst. Solids 242, 25–32 (1998)CrossRefGoogle Scholar
  107. 16.107
    D.E. Day, Z. Wu, C.S. Ray, P. Hrma: Chemically durable iron phosphate glass wasteforms, J. Non-Cryst. Solids 241, 1–12 (1998)CrossRefGoogle Scholar
  108. 16.108
    ASTM: ASTM C1285–14: Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) (ASTM International, West Conshohoken 2014)Google Scholar
  109. 16.109
    B.C. Bunker, G.W. Arnold, J.A. Wilder: Phosphate glass dissolution in aqueous solutions, J. Non-Cryst. Solids 64, 291–316 (1984)CrossRefGoogle Scholar
  110. 16.110
    H. Gao, T. Tan, D. Wang: Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium, J. Controll. Release 96, 29–36 (2004)CrossRefGoogle Scholar
  111. 16.111
    F. Döhler, A. Mandlule, L. Van Wüllen, M. Friedrich, D.S. Brauer: 31P NMR characterization of phosphate fragments during dissolution of calcium sodium phosphate glasses, J. Mater. Chem. B 3, 1125–1134 (2015)CrossRefGoogle Scholar
  112. 16.112
    P.E. Gray, L.C. Klein: The chemical durability of sodium ultraphosphate glasses, Glass Technol. 24(4), 202–206 (1983)Google Scholar
  113. 16.113
    N. Mascaraque, A. Durán, F. Muñoz: Effect of fluorine and nitrogen on the chemical durability of lithium phosphate glasses, J. Non-Cryst. Solids 417/418, 60–65 (2015)CrossRefGoogle Scholar
  114. 16.114
    H. Takebe, Y. Baba, M. Kuwabara: Dissolution behavior of ZnO-P2O5 glasses in water, J. Non-Cryst. Solids 352, 3088–3094 (2006)CrossRefGoogle Scholar
  115. 16.115
    R. Marchand: Mise en évidence de verres de phosphates contenant de l'azote, C. R. Acad. Sci. Paris 294, 91–94 (1982)Google Scholar
  116. 16.116
    S. Hampshire, M.J. Pomeroy: Grain boundary glasses in silicon nitride: A review of chemistry, properties and crystallisation, J. Eur. Ceram. Soc. 32, 1925–1932 (2012)CrossRefGoogle Scholar
  117. 16.117
    F. Muñoz, A. Durán, L. Pascual, R. Marchand: Compositional and viscosity influence on the nitrogen/oxygen substitution reactions in phosphate melts, Phys. Chem. Glasses 46(1), 39–45 (2005)Google Scholar
  118. 16.118
    R. Marchand, D. Agliz, L. Boukbir, A. Quemerais: Characterization of nitrogen containing phosphate glasses by x-ray photoelectron spectroscopy, J. Non-Cryst. Solids 103, 35–44 (1988)CrossRefGoogle Scholar
  119. 16.119
    B.C. Bunker, G.W. Arnold, M. Rajaram, D.E. Day: Corrosion of phosphorus oxynitride glasses in water and humid air, J. Am. Ceram. Soc. 70, 425–430 (1987)CrossRefGoogle Scholar
  120. 16.120
    L. Pascual, A. Durán: Preparation and properties of nitride phosphate glasses, Glastech. Ber. 64(2), 43–48 (1991)Google Scholar
  121. 16.121
    M.R. Reidmeyer, D.E. Day: Phosphorus oxynitride glasses, J. Non-Cryst. Solids 181, 201–214 (1995)CrossRefGoogle Scholar
  122. 16.122
    A. Le Sauze, R. Marchand: Chemically durable nitride phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra, J. Non-Cryst. Solids 263/264, 285–292 (2000)CrossRefGoogle Scholar
  123. 16.123
    G.L. Paraschiv, F. Muñoz, L.R. Jensen, Y. Yue, M. Smedskjaer: Impact of nitridation of metaphosphate glasses on liquid fragility, J. Non-Cryst. Solids 441, 22–28 (2016)CrossRefGoogle Scholar
  124. 16.124
    M.R. Reidmeyer, D.E. Day: Preparation and properties of nitrogen-doped phosphate glasses, J. Am. Ceram. Soc. 68(8), C-188–C-190 (1985)CrossRefGoogle Scholar
  125. 16.125
    R.K. Brow, M.R. Reidmeyer, D.E. Day: Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses, J. Non-Cryst. Solids 99, 178–189 (1988)CrossRefGoogle Scholar
  126. 16.126
    A. Le Sauze, L. Montagne, G. Palavit, F. Fayon, R. Marchand: X-ray photoelectron spectroscopy and nuclear magnetic resonance structural study of phosphorus oxynitride glasses ‘LiNaPON', J. Non-Cryst. Solids 263/264, 139–145 (2000)CrossRefGoogle Scholar
  127. 16.127
    F. Muñoz, L. Pascual, A. Durán, J. Rocherullé, R. Marchand: Alkali and alkali-lead oxynitride phosphate glasses : A comparative structural study by NMR and XPS, C. R. Chim. 5, 731–738 (2002)CrossRefGoogle Scholar
  128. 16.128
    F. Muñoz, L. Pascual, A. Durán, L. Montagne, G. Palavit, R. Berjoan, R. Marchand: Structural of phosphorus oxynitride glasses LiNaPbPON by nuclear magnetic resonance and x-ray photoelectron spectroscopy, J. Non-Cryst. Solids 324, 142–149 (2003)CrossRefGoogle Scholar
  129. 16.129
    F. Muñoz, L. Pascual, A. Durán, R. Berjoan, R. Marchand: Validation of the mechanism of nitrogen/oxygen substitution in Li-Na-Pb-P-O-N oxynitride phosphate glasses, J. Non-Cryst. Solids 352, 3947–3951 (2006)CrossRefGoogle Scholar
  130. 16.130
    F. Muñoz: Kinetic analysis of the substitution of nitrogen for oxygen in phosphate glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 52(4), 181–186 (2011)Google Scholar
  131. 16.131
    F. Muñoz, L. Delevoye, L. Montagne, T. Charpentier: New insights into the structure of oxynitride NaPON phosphate glasses by 17-oxygen NMR, J. Non-Cryst. Solids 363, 134–139 (2013)CrossRefGoogle Scholar
  132. 16.132
    F. Muñoz, A. Durán, L. Pascual: Synthesis and properties of nitrided phosphate glasses in the system R2O-R'O-PbO-P2O5 (R, R'=Li, Na), Phys. Chem. Glasses 43C, 113–118 (2002)Google Scholar
  133. 16.133
    Q. Riguidel, F. Muñoz: Effect of nitridation on the aqueous dissolution of Na2O-K2O-CaO-P2O5 metaphosphate glasses, Acta Biomater 7, 2631–2636 (2011)CrossRefGoogle Scholar
  134. 16.134
    B. Wang, B.S. Kwak, B.C. Sales, J.B. Bates: Ionic conductivities and structure of lithium phosphorus oxynitride glasses, J. Non-Cryst. Solids 183, 297–306 (1995)CrossRefGoogle Scholar
  135. 16.135
    R.K. Brow, D.R. Tallant: Structural design of sealing glasses, J. Non-Cryst. Solids 222, 396–406 (1997)CrossRefGoogle Scholar
  136. 16.136
    J. Rocherullé, J. Massera, H. Oudadesse, L. Calvet, J. Trolès, X.H. Zhang: Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region, J. Therm. Anal. Calorim. 123, 401–407 (2016)CrossRefGoogle Scholar
  137. 16.137
    S. Inaba, S. Oda, K. Morinaga: Heat capacity of oxide glasses measured by AC calorimetry, J. Non-Cryst. Solids 306, 42–49 (2002)CrossRefGoogle Scholar
  138. 16.138
    J.J. Hudgens, R.K. Brow: Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses, J. Non-Cryst. Solids 223, 21–31 (1998)CrossRefGoogle Scholar
  139. 16.139
    T.M. Alam, S. Conzone, R.K. Brow, T.J. Boyle: 6Li, 7Li nuclear magnetic resonance investigation of lithium coordination in binary phosphate glasses, J. Non-Cryst. Solids 258, 140–154 (1999)CrossRefGoogle Scholar
  140. 16.140
    R.G. Frieser: A review of solder glasses, Electrocompon. Sci. Technol. 2, 163–199 (1975)CrossRefGoogle Scholar
  141. 16.141
    I.W. Donald: Preparation, properties and chemistry of glass and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 28, 2841–2886 (1993)CrossRefGoogle Scholar
  142. 16.142
    J.A. Wilder, J.T. Healey, B.C. Bunker: Phosphate glass-ceramics: Formation, properties, and application. In: Nucleation and crystallization in glasses, Advances in Ceramics, Vol. 4, ed. by J.H. Simmons (American Ceramic Society, Columbus 1982) pp. 313–326Google Scholar
  143. 16.143
    T.H. Wang, P.F. James: A new machinable phosphate-based glass ceramic. In: Proc. 2nd Int. Conf. New Mater. Appl, Vol. 111, ed. by D. Holland (University of Warwick, Bristol 1990) pp. 401–410Google Scholar
  144. 16.144
    I.W. Donald, P.M. Mallinson, B.L. Metcalfe, L.A. Gerrard, J.A. Fernie: Recent developments in the preparation, characterization and applications of glass and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 46, 1975–2000 (2011)CrossRefGoogle Scholar
  145. 16.145
    A.E. Marino, S.R. Arrasmith, L.L. Gregg, S.D. Jacobs, G. Chen, Y. Duc: Durable phosphate glasses with lower transition temperatures, J. Non-Cryst. Solids 289, 37–41 (2001)CrossRefGoogle Scholar
  146. 16.146
    D. Ehrt: Phosphate and fluoride-phosphate optical glasses–properties, structure and applications, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 56(6), 217–234 (2015)Google Scholar
  147. 16.147
    E.T.Y. Lee, E.R.M. Taylor: Thermo-optic coefficients of potassium alumino-metaphosphate glasses, J. Non-Cryst. Solids 65, 1187–1192 (2004)Google Scholar
  148. 16.148
    A.K. Varshneya: Fundamentals of Inorganic Glasses (Academic, London 1994)Google Scholar
  149. 16.149
    P.R. Ehrmann, K. Carlson, J.H. Campbell, C.A. Click, R.K. Brow: Neodymium fluorescence quenching by hydroxyl groups in phosphate laser glasses, J. Non-Cryst. Solids 349, 105–114 (2004)CrossRefGoogle Scholar
  150. 16.150
    J.S. Hayden, M.K. Aston, S.A. Payne, M.L. Elder, J.H. Campbell: Laser and thermo-physical properties of Nd-doped phosphate glasses, Proc. SPIE 1761, 162–173 (1992)CrossRefGoogle Scholar
  151. 16.151
    G. Ofelt: Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37, 511–520 (1962)CrossRefGoogle Scholar
  152. 16.152
    B. Judd: Optical absorption intensities of rare-earth ions, Phys. Rev. 127, 750–761 (1962)CrossRefGoogle Scholar
  153. 16.153
    W.F. Krupke: Induced-emission cross sections in neodymium laser glasses, IEEE J. Quantum Electron. QE-10, 450–457 (1974)CrossRefGoogle Scholar
  154. 16.154
    C. Thorsness, T.I. Suratwala, R.A. Steele, J.H. Campbell, J.S. Hayden, S. Pucilowski, K. Suzuki: Dehydroxylation of phosphate laser glass, Proc. SPIE 4102, 175–194 (2000)CrossRefGoogle Scholar
  155. 16.155
    P. Ehrmann, J. Campbell, T. Suratwala, J. Hayden, D. Krashkevich, K. Takeuchi: Optical loss and Nd3+ non-radiative relaxation by Cu, Fe and several rare-earth impurities in phosphate laser glasses, J. Non-Cryst. Solids 263, 251–262 (2000)CrossRefGoogle Scholar
  156. 16.156
    V. Arbuzov, Y.K. Fyodorov, S. Kramarev, S. Lunter, S. Nikitina, A. Pozharskii, A. Shashkin, A. Semyonov, V. Ter-Nersesyants, A. Charukhchev: Neodymium phosphate glasses for the active elements of a 128 channel laser facility, Glass Technol. 46, 67–70 (2005)Google Scholar
  157. 16.157
    L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, Z. Jiang: Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility, High Power Laser Sci. Eng. 2, 1–6 (2014)CrossRefGoogle Scholar
  158. 16.158
    E.A. Abou Neel, W. Chrzanowski, D.M. Pickup, L.A. O'Dell, N.J. Mordan, R.J. Newport, M.E. Smith, J.C. Knowles: Structure and properties of strontium-doped phosphate-based glasses, J. R. Soc. Interface 6, 435–446 (2009)CrossRefGoogle Scholar
  159. 16.159
    E.A. Abou Neel, I. Ahmed, J.J. Blaker, A. Bismarck, A.R. Boccaccini, M.P. Lewis, S.N. Nazhat, J.C. Knowles: Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres, Acta Biomater 1, 553–563 (2005)CrossRefGoogle Scholar
  160. 16.160
    E.A. Abou Neel, W. Chrzanowski, J.C. Knowles: Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses, Acta Biomater 4, 523–534 (2008)CrossRefGoogle Scholar
  161. 16.161
    M. Navarro, M.P. Ginebra, J.A. Planell: Cellular response to calcium phosphate glasses with controlled solubility, J. Biomed. Mater. Res. A 67, 1009–1015 (2003)CrossRefGoogle Scholar
  162. 16.162
    D. Furniss, A.B. Seddon: Towards monomode proportioned fibreoptic preforms by extrusion, J. Non-Cryst. Solids 256/257, 232–236 (1999)CrossRefGoogle Scholar
  163. 16.163
    F.T. Wallenberger, N.E. Weston: Glass fibers from high and low viscosity melts, Mater. Res. Soc. Symp. Proc. 702, 165–172 (2002)Google Scholar
  164. 16.164
    J. Choueka, J.L. Charvet, H. Alexander, Y.O. Oh, G. Joseph, N.C. Blumenthal, W.C. LaCourse: Effect of annealing temperature on the degradation of reinforcing fibers for absorbable implants, J. Biomed. Mater. Res. 29, 1309–1315 (1995)CrossRefGoogle Scholar
  165. 16.165
    I. Ahmed, C.A. Collins, M.P. Lewis, I. Olsen, J.C. Knowles: Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials 25, 3223–3232 (2004)CrossRefGoogle Scholar
  166. 16.166
    I. Ahmed, S.S. Shaharuddin, N. Sharmin, D. Furniss, C. Rudd: Core/clad phosphate glass fibres containing iron and/or titanium, Biomed. Glasses 1, 20–30 (2015)CrossRefGoogle Scholar
  167. 16.167
    F. Ungaro, R. d'Emmanuele di Villa Bianca, C. Giovino, A. Miro, R. Sorrentino, F. Quaglia, M.I. La Rotonda: Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs, J. Control. Release 135, 25–34 (2009)CrossRefGoogle Scholar
  168. 16.168
    T. Rouxel: Elastic properties of glasses: A multiscale approach, C. R. Méc. 334, 743–753 (2006)CrossRefGoogle Scholar
  169. 16.169
    M. Goldstein, T.H. Davies: Glass fibers with oriented chain molecules, J. Am. Ceram. Soc. 38, 223–226 (1955)CrossRefGoogle Scholar
  170. 16.170
    S. Inaba, H. Hosono, S. Ito: Entropic shrinkage of an oxide glass, Nat. Mater. 14, 312–317 (2015)CrossRefGoogle Scholar
  171. 16.171
    I. Ahmed, P.S. Cronin, E.A. Abou Neel, A.J. Parsons, J.C. Knowles, C.D. Rudd: Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite, J. Biomed. Mater. Res. B. Appl. Biomater. 89, 18–27 (2009)CrossRefGoogle Scholar
  172. 16.172
    I. Ahmed, I. Jones, A. Parsons, J. Bernard, J. Farmer, C. Scotchford, G. Walker, C. Rudd: Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture, J. Mater. Sci. Mater. Med. 22, 1825–1834 (2011)CrossRefGoogle Scholar
  173. 16.173
    A.Z. Kharazi, M.H. Fathi, F. Bahmany: Design of a textile composite bone plate using 3-D-finite element method, Mater. Design 31, 1468–1474 (2010)CrossRefGoogle Scholar
  174. 16.174
    S.L. Evans, P.J. Gregson: Composite technology in load-bearing orthopaedic implants, Biomaterials 19, 1329–1342 (1998)CrossRefGoogle Scholar
  175. 16.175
    N. Sharmin, A.J. Parsons, C.D. Rudd, I. Ahmed: Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5, J. Biomater. Appl. 29, 639–653 (2014)CrossRefGoogle Scholar
  176. 16.176
    R.M. Felfel, I. Ahmed, A.J. Parsons, P. Haque, G.S. Walker, C.D. Rudd: Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates, J. Biomater. Appl. 26, 765–789 (2012)CrossRefGoogle Scholar
  177. 16.177
    R. Shah, A.C.M. Sinanan, J.C. Knowles, N.P. Hunt, M.P. Lewis: Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct, Biomaterials 26, 1497–1505 (2005)CrossRefGoogle Scholar
  178. 16.178
    E.A. Abou Neel, I. Ahmed, J. Pratten, S.N. Nazhat, J.C. Knowles: Characterisation of antibacterial copper releasing degradable phosphate glass fibres, Biomaterials 26, 2247–2254 (2005)CrossRefGoogle Scholar
  179. 16.179
    M. Yamaguchi, H. Oishi, Y. Suketa: Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol. 36, 4007–4012 (1987)CrossRefGoogle Scholar
  180. 16.180
    C. Gérard, L.-J. Bordeleau, J. Barralet, C.J. Doillon: The stimulation of angiogenesis and collagen deposition by copper, Biomaterials 31, 824–831 (2010)CrossRefGoogle Scholar
  181. 16.181
    C. Vitale-Brovarone, G. Novajra, J. Lousteau, D. Milanese, S. Raimondo, M. Fornaro: Phosphate glass fibres and their role in neuronal polarization and axonal growth direction, Acta Biomater 8, 1125–1136 (2012)CrossRefGoogle Scholar
  182. 16.182
    S.N. Nazhat, E.A. Abou Neel, A. Kidane, I. Ahmed, C. Hope, M. Kershaw, P.D. Lee, E. Stride, N. Saffari, J.C. Knowles, R.A. Brown: Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers, Biomacromolecules 8, 543–551 (2006)CrossRefGoogle Scholar
  183. 16.183
    R. Felfel, I. Ahmed, A. Parsons, L. Harper, C. Rudd: Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails, J. Mater. Sci. 47, 4884–4894 (2012)CrossRefGoogle Scholar
  184. 16.184
    R.M. Felfel, I. Ahmed, A.J. Parsons, C.D. Rudd: Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation, J. Mech. Behav. Biomed. Mater. 17, 76–88 (2013)CrossRefGoogle Scholar
  185. 16.185
    N.-Y. Joo, J.C. Knowles, G.-S. Lee, J.-W. Kim, H.-W. Kim, Y.-J. Son, J.K. Hyun: Effects of phosphate glass fiber–collagen scaffolds on functional recovery of completely transected rat spinal cords, Acta Biomater 8, 1802–1812 (2012)CrossRefGoogle Scholar
  186. 16.186
    R. Kayacan: The effect of staining on the monotonic tensile mechanical properties of human cortical bone, J. Anat. 211, 654–661 (2007)CrossRefGoogle Scholar
  187. 16.187
    F.G. Evans: Mechanical properties and histology of cortical bone from younger and older men, Anat. Rec. 185, 1–11 (1976)CrossRefGoogle Scholar
  188. 16.188
    C.A. Scotchford, M. Shataheri, P.S. Chen, M. Evans, A.J. Parsons, G.A. Aitchison, C. Efeoglu, J.L. Burke, A. Vikram, S.E. Fisher, C.D. Rudd: Repair of calvarial defects in rats by prefabricated, degradable, long fibre composite implants, J. Biomed. Mater. Res. A 96, 230–238 (2010)Google Scholar
  189. 16.189
    A. Alani, J.C. Knowles, W. Chrzanowski, Y.L. Ng, K. Gulabivala: Ion release characteristics, precipitate formation and sealing ability of a phosphate glass-polycaprolactone-based composite for use as a root canal obturation material, Dent. Mater. 25, 400–410 (2009)CrossRefGoogle Scholar
  190. 16.190
    T. Ohtomo, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Electrical and electrochemical properties of Li2S-P2S5-P2O5 glass-ceramic electrolytes, J. Power Sources 146, 715–718 (2005)CrossRefGoogle Scholar
  191. 16.191
    S. Chenu, R. Lebullenger, P. Bérnard-Rocherullé, G. Calvez, O. Guillou, J. Rocherullé, A. Kidari, M.J. Pomeroy, S. Hampshire: Glass reactive sintering as an alternative route for the synthesis of NZP glass-ceramics, J. Mater. Sci. 47, 486–492 (2012)CrossRefGoogle Scholar
  192. 16.192
    G. Delaizir, V. Seznec, P. Rozier, C. Surcin, P. Salles, M. Dollé: Electrochemical performances of vitreous materials in the system Li2O-V2O5-P2O5 as electrode for lithium batteries, Solid State Ion 237, 22–27 (2013)CrossRefGoogle Scholar
  193. 16.193
    S.W. Martin, C.A. Angell: Dc and Ac conductivity in wide composition range Li2O-P2O5 glasses, J. Non-Cryst. Solids 83, 185–207 (1986)CrossRefGoogle Scholar
  194. 16.194
    H. Takahashi, H. Nakanii, T. Sakuma, Y. Onoda: Sodium ion motion in NaI-AgPO3 glasses, Solid State Ion 179, 2137–2141 (2008)CrossRefGoogle Scholar
  195. 16.195
    A.C.M. Rodrigues, M.L.F. Nascimento, C.B. Bragatto, J.-L. Souquet: Charge carrier mobility and concentration as a function of composition in AgPO3-AgI glasses, J. Chem. Phys. 135, 234504 (2011)CrossRefGoogle Scholar
  196. 16.196
    O.L. Anderson, D.A. Stuart: Calculation of activation energy of ionic conductivity in silica glasses by classical methods, J. Am. Ceram. Soc. 37(12), 573–580 (1954)CrossRefGoogle Scholar
  197. 16.197
    M.D. Ingram, C.T. Moynihan, A.V. Lesikar: Ionic conductivity and the weak electrolyte theory of glass, J. Non-Cryst. Solids 38/39, 371–376 (1980)CrossRefGoogle Scholar
  198. 16.198
    B. Santic, A. Mogus-Milankovic, D.E. Day: The dc electrical conductivity of iron phosphate glasses, J. Non-Cryst. Solids 296, 65–73 (2001)CrossRefGoogle Scholar
  199. 16.199
    M. Wasiucionek, J.E. Garbarczyk, P. Kurek, J. Jakubowski: Electrical properties of glasses of the Na2O-V2O5-P2O5 system, Solid State Ion 70/71, 346–349 (1994)CrossRefGoogle Scholar
  200. 16.200
    J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski: Effect of nanocrystallization on the electronic conductivity of vanadate-phosphate glasses, Solid State Ion 177, 2585–2588 (2006)CrossRefGoogle Scholar
  201. 16.201
    A.K. Kercher, J.O. Ramey, K.J. Carroll, J.O. Kiggans, N.J. Dudney, R.A. Meisner, L.A. Boatner, G.M. Weith: Mixed polyanion glass cathodes: Iron phosphate vanadate glasses, J. Electrochem. Soc. 161(14), A2210–A2215 (2014)CrossRefGoogle Scholar
  202. 16.202
    A.K. Kercher, J.A. Kolopus, K.J. Carroll, R.R. Unocic, S. Kirklin, C. Wolverton, S.L. Stooksbury, L.A. Boatner, N.J. Dudney: Mixed polyanion glass cathodes: Glass-state conversion reactions, J. Electrochem. Soc. 163(2), A131–A137 (2016)CrossRefGoogle Scholar
  203. 16.203
    J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace: Conductivity anomalies in tungstate-phosphate glasses: Evidence for an ion-polaron interaction?, Solid State Ion 86–88, 497–501 (1996)CrossRefGoogle Scholar
  204. 16.204
    I. Oliva, A. Masuno, H. Inoue, H. Tawarayama, H. Kawazoe: Mixed conduction in alkali niobium tungsten phosphate glasses, Solid State Ion 206, 405–409 (2012)CrossRefGoogle Scholar
  205. 16.205
    Y. Abe, H. Shimakawa: Protonic conduction in alkaline earth metaphosphate glasses containing, J. Non-Cryst. Solids 51, 357–365 (1982)CrossRefGoogle Scholar
  206. 16.206
    H. Sumi, Y. Nakano, Y. Fujishiro, T. Kasuga: Proton conduction of MO-P2O5 glasses (M = Zn,Ba) containing a large amount of water, Solid State Sci. 45, 5–8 (2015)CrossRefGoogle Scholar
  207. 16.207
    N.J. Dudney: Addition of a thin-film inorganic electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte, J. Power Sources 89, 176–179 (2000)CrossRefGoogle Scholar
  208. 16.208
    J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans: Thin-film lithium and lithium-ion batteries, Solid State Ion 135, 33–45 (2000)CrossRefGoogle Scholar
  209. 16.209
    S. Jacke, J. Song, L. Dimesso, J. Brötz, D. Becker, W. Jaegermann: Temperature dependent phosphorus oxynitride growth for all-solid-state batteries, J. Power Sources 196, 6911–6914 (2011)CrossRefGoogle Scholar
  210. 16.210
    F. Muñoz: Comments on the structure of LiPON thin-film electrolytes, J. Power Sources 198, 432–433 (2012)CrossRefGoogle Scholar
  211. 16.211
    F. Muñoz, A. Durán, L. Pascual, L. Montagne, B. Revel, A.C.M. Rodrigues: Increased electrical conductivity of LiPON glasses produced by ammonolysis, Solid State Ion 179, 574–579 (2008)CrossRefGoogle Scholar
  212. 16.212
    N. Mascaraque, J.L.G. Fierro, A. Durán, F. Muñoz: An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses, Solid State Ion. 233, 73–79 (2013)CrossRefGoogle Scholar
  213. 16.213
    Y. Shimonishi, T. Zhang, N. Imanishi, D. Im, D.J. Lee, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes: A study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions, J. Power Sources 196, 5128–5132 (2011)CrossRefGoogle Scholar
  214. 16.214
    S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, O. Yamamoto: Study on lithium/air secondary batteries-stability of NASICON-type lithium ion conducting glass-ceramics with water, J. Power Sources 189, 371–377 (2009)CrossRefGoogle Scholar
  215. 16.215
    X. Yu, D.E. Day, G.J. Long, R.K. Brow: Properties and structure of sodium-iron phosphate glasses, J. Non-Cryst. Solids 215, 21–31 (1997)CrossRefGoogle Scholar
  216. 16.216
    ISO 16797:2004: Nuclear Energy-Soxhelt-Mode Chemical Disability Test-Application to Vitrified Matrixes for High-Level Radioactive Waste (International Organization for Standardization, Geneva 2004)Google Scholar
  217. 16.217
    M.I. Ojovan, W.E. Lee: An Introduction to Nuclear Waste Immobilization (Elsevier, Amsterdam 2005)Google Scholar
  218. 16.218
    C.W. Kim, C.S. Ray, D. Zhu, D.E. Day, D. Gombert, A. Aloy, A. Mogus-Milankovi, M. Karabulut: Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques, J. Nucl. Mater. 322, 152–164 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco Muñoz
    • 1
    Email author
  • Jean Rocherullé
    • 2
  • Ifty Ahmed
    • 3
  • Lili Hu
    • 4
  1. 1.Institute of Ceramics and Glass (CSIC)MadridSpain
  2. 2.Institute of Chemical Sciences Rennes, UMR CNRS 6226University of Rennes 1RennesFrance
  3. 3.Faculty of EngineeringUniversity of NottinghamNottinghamUK
  4. 4.Shanghai Institute of Optics and Fine MechanicsChinese Academy of ScienceShanghaiChina

Personalised recommendations