Advertisement

Classical Results and Modern Approaches to Nonconservative Stability

Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 586)

Abstract

Stability of nonconservative systems is nontrivial already on the linear level, especially, if the system depends on multiple parameters. We present an overview of results and methods of stability theory that are specific for nonconservative applications. Special attention is given to the topics of flutter and divergence, reversible- and Hamiltonian-Hopf bifurcation, Krein signature, modes and waves of positive and negative energy, dissipation-induced instabilities, destabilization paradox, influence of structure of forces on stability and stability optimization.

References

  1. N. Andersson, Gravitational waves from instabilities in relativistic stars. Class. Quantum Grav. 20, R105–R144 (2003)MathSciNetCrossRefGoogle Scholar
  2. I.P. Andreichikov, V.I. Yudovich, The stability of visco-elastic rods. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela. 9(2), 78–87 (1974)Google Scholar
  3. S. Aoi, Y. Egi, K. Tsuchiya, Instability-based mechanism for body undulations in centipede locomotion. Phys. Rev. E 87, 012717 (2013)CrossRefGoogle Scholar
  4. V.I. Arnold, Lectures on bifurcations in versal families. Russ. Math. Surv. 27, 54–123 (1972)CrossRefGoogle Scholar
  5. G.L. Austin Sydes, Self-stable bicycles. Bsc (Hons) mathematics final year project report. (Northumbria University, Newcastle upon Tyne, UK, 2018)Google Scholar
  6. P.V. Bayly, S.K. Dutcher, Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. J. R. Soc. Interface 13, 20160523 (2016)CrossRefGoogle Scholar
  7. M. Beck, Die Knicklast des einseitig eingespannten, tangential gedruckten Stabes. Z. angew. Math. Phys. 3, 225–228 (1952)CrossRefGoogle Scholar
  8. V.V. Beletsky, Some stability problems in applied mechanics. Appl. Math. Comput. 70, 117–141 (1995)MathSciNetMATHGoogle Scholar
  9. M.V. Berry, P. Shukla, Curl force dynamics: symmetries, chaos and constants of motion. New J. Phys. 18, 063018 (2016)CrossRefGoogle Scholar
  10. D. Bigoni, G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Sol. 59, 2208–2226 (2011)CrossRefGoogle Scholar
  11. D. Bigoni, D. Misseroni, M. Tommasini, O.N. Kirillov, G. Noselli, Detecting singular weak-dissipation limit for flutter onset in reversible systems. Phys. Rev. E 97(2), 023003 (2018)CrossRefGoogle Scholar
  12. A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, T.S. Ratiu, Dissipation induced instabilities. Annales de L’Institut Henri Poincare - Analyse Non Lineaire 11, 37–90 (1994)MathSciNetCrossRefGoogle Scholar
  13. V.V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability (Pergamon Press, Oxford, 1963)MATHGoogle Scholar
  14. A.V. Borisov, A.A. Kilin, I.S. Mamaev, The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids. Reg. Chaotic Dyn. 14(2), 179–217 (2009)MathSciNetCrossRefGoogle Scholar
  15. O. Bottema, On the stability of the equilibrium of a linear mechanical system, ZAMP Z. Angew. Math. Phys. 6, 97–104 (1955)MathSciNetCrossRefGoogle Scholar
  16. O. Bottema, The Routh-Hurwitz condition for the biquadratic equation. Indag. Math. (Proc.) 59, 403–406 (1956)MathSciNetCrossRefGoogle Scholar
  17. R.M. Bulatovic, A sufficient condition for instability of equilibrium of nonconservative undamped systems. Phys. Lett. A 375, 3826–3828 (2011)MathSciNetCrossRefGoogle Scholar
  18. R.M. Bulatovic, A stability criterion for circulatory systems. Acta Mech. 228(7), 2713–2718 (2017)MathSciNetCrossRefGoogle Scholar
  19. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (Yale University Press, New Haven, 1969)MATHGoogle Scholar
  20. S. Chandrasekhar, Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 24(11), 611–615 (1970)CrossRefGoogle Scholar
  21. S. Chandrasekhar, On stars, their evolution and their stability. Science 226(4674), 497–505 (1984)CrossRefGoogle Scholar
  22. G. De Canio, E. Lauga, R.E. Goldstein, Spontaneous oscillations of elastic filaments induced by molecular motors. J. R. Soc. Interface 14, 20170491 (2017)CrossRefGoogle Scholar
  23. P. Gallina, About the stability of non-conservative undamped systems. J. Sound Vibr. 262, 977–988 (2003)MathSciNetCrossRefGoogle Scholar
  24. V.L. Ginzburg, V.N. Tsytovich, Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49(1), 1–89 (1979)CrossRefGoogle Scholar
  25. G. Gladwell, Follower forces - Leipholz early researches in elastic stability. Can. J. Civil Eng. 17, 277–286 (1990)CrossRefGoogle Scholar
  26. A.G. Greenhill, On the rotation required for the stability of an elongated projectile. Min. Proc. R. Artill. Inst. X(7), 577–593 (1879)Google Scholar
  27. A.G. Greenhill, On the general motion of a liquid ellipsoid under the gravitation of its own parts. Proc. Camb. Philos. Soc. 4, 4–14 (1880)MATHGoogle Scholar
  28. A.G. Greenhill, Determination of the greatest height consistent with stability that a vertical pole or must can be made, and of the greatest height to which a tree of given proportions can grow. Proc. Camb. Philos. Soc. 4, 65–73 (1881)MATHGoogle Scholar
  29. A.G. Greenhill, On the strength of shafting when exposed both to torsion and to end thrust. Proc. Inst. Mech. Eng. 34, 182–225 (1883)CrossRefGoogle Scholar
  30. P. Hagedorn, E. Heffel, P. Lancaster, P.C. Müller, S. Kapuria, Some recent results on MDGKN-systems. ZAMM - Z. Angew. Math. Mech. 95(7), 695–702 (2014)MathSciNetCrossRefGoogle Scholar
  31. P.L. Kapitsa, Stability and passage through the critical speed of the fast spinning rotors in the presence of damping. Z. Tech. Phys. 9, 124–147 (1939)Google Scholar
  32. M.A. Karami, D.J. Inman, Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vibr. 330, 5583–5597 (2011)CrossRefGoogle Scholar
  33. A.L. Kimball, Internal friction as a cause of shaft whirling. Phil. Mag. 49, 724–727 (1925)CrossRefGoogle Scholar
  34. O.N. Kirillov, Gyroscopic stabilization in the presence of nonconservative forces. Doklady Math. 76(2), 780–785 (2007)MathSciNetCrossRefGoogle Scholar
  35. O.N. Kirillov, Campbell diagrams of weakly anisotropic flexible rotors. Proc. R. Soc. A 465(2109), 2703–2723 (2009)MathSciNetCrossRefGoogle Scholar
  36. O.N. Kirillov, Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices. ZAMP - Z. Angew. Math. Phys. 61, 221–234 (2010)MathSciNetCrossRefGoogle Scholar
  37. O.N. Kirillov, Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications. Int. J. Vehicle Struct. Syst. 3(1), 1–13 (2011a)Google Scholar
  38. O.N. Kirillov, Brouwer’s problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics. Phys. Lett. A 375, 1653–1660 (2011b)CrossRefGoogle Scholar
  39. O.N. Kirillov, Nonconservative Stability Problems of Modern Physics (De Gruyter, Berlin, 2013a)Google Scholar
  40. O.N. Kirillov, Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems. Phil. Trans. R. Soc. A 371, 20120051 (2013b)MathSciNetCrossRefGoogle Scholar
  41. O.N. Kirillov, Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics. Proc. R. Soc. A 473(2205), 20170344 (2017)MathSciNetCrossRefGoogle Scholar
  42. O.N. Kirillov, A.P. Seyranian, Metamorphoses of characteristic curves in circulatory systems. J. Appl. Math. Mech. 66, 371–385 (2002a)MathSciNetCrossRefGoogle Scholar
  43. O.N. Kirillov, A.P. Seyranian, A nonsmooth optimization problem. Moscow Univ. Mech. Bull. 57, 1–6 (2002b)MATHGoogle Scholar
  44. O.N. Kirillov, F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? ZAMM - Z. Angew. Math. Mech. 90(6), 462–488 (2010)MathSciNetCrossRefGoogle Scholar
  45. W. Kliem, C. Pommer, A note on circulatory systems: old and new results. Z. Angew. Math. Mech. 97, 92–97 (2017)MathSciNetCrossRefGoogle Scholar
  46. J.D.G. Kooijman, J.P. Meijaard, J.M. Papadopoulos, A. Ruina, A.L. Schwab, A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011)MathSciNetCrossRefGoogle Scholar
  47. N.D. Kopachevskii, S.G. Krein, Operator Approach in Linear Problems of Hydrodynamics. Self-adjoint Problems for an Ideal Fluid, Operator Theory: Advances and Applications, vol. 1 (Birkhauser, Basel, 2001)Google Scholar
  48. R. Krechetnikov, J.E. Marsden, Dissipation-induced instabilities in finite dimensions. Rev. Mod. Phys. 79, 519–553 (2007)MathSciNetCrossRefGoogle Scholar
  49. V. Lakhadanov, On stabilization of potential systems, Prikl. Mat. Mekh. 39, 53–58 (1975)MathSciNetCrossRefGoogle Scholar
  50. J.S.W. Lamb, J.A.G. Roberts, Time-reversal symmetry in dynamical systems: a survey. Phys. D 112, 1–39 (1998)MathSciNetCrossRefGoogle Scholar
  51. W.F. Langford, Hopf meets Hamilton under Whitney’s umbrella, in IUTAM Symposium on Nonlinear Stochastic Dynamics. Proceedings of the IUTAM Symposium, Monticello, IL, USA, Augsut 26–30, 2002, Solid Mech. Appl., vol. 110, ed. S.N. Namachchivaya, pp. 157–165 (Kluwer, Dordrecht, 2003)Google Scholar
  52. N.R. Lebovitz, Binary fission via inviscid trajectories. Geoph. Astroph. Fluid. Dyn. 38(1), 15–24 (1987)CrossRefGoogle Scholar
  53. N.R. Lebovitz, The mathematical development of the classical ellipsoids. Int. J. Eng. Sci. 36(12), 1407–1420 (1998)MathSciNetCrossRefGoogle Scholar
  54. H. Leipholz, Stability Theory: an Introduction to the Stability of Dynamic Systems and Rigid Bodies, 2nd edn. (Teubner, Stuttgart, 1987)CrossRefGoogle Scholar
  55. L. Lindblom, S.L. Detweiler, On the secular instabilities of the Maclaurin spheroids. Astrophys. J. 211, 565–567 (1977)CrossRefGoogle Scholar
  56. A. Luongo, M. Ferretti, Postcritical behavior of a discrete Nicolai column. Nonlin. Dyn. 86, 2231–2243 (2016)MathSciNetCrossRefGoogle Scholar
  57. A. Luongo, M. Ferretti, F. D’Annibale, Paradoxes in dynamic stability of mechanical systems: investigating the causes and detecting the nonlinear behaviors. Springer Plus 5, 60 (2016)CrossRefGoogle Scholar
  58. A.M. Lyapunov, The general problem of the stability of motion (translated into English by A. T. Fuller). Int. J. Control 55, 531–773 (1992)CrossRefGoogle Scholar
  59. R.S. MacKay, Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett. A 155, 266–268 (1991)MathSciNetCrossRefGoogle Scholar
  60. O. Mahrenholtz, R. Bogacz, On the shape of characteristic curves for optimal structures under non-conservative loads. Arch. Appl. Mech. 50, 141–148 (1981)MATHGoogle Scholar
  61. S. Mandre, L. Mahadevan, A generalized theory of viscous and inviscid flutter. Proc. R. Soc. Lond. A 466, 141–156 (2010)MathSciNetCrossRefGoogle Scholar
  62. D.R. Merkin, Gyroscopic Systems (Gostekhizdat, Moscow, 1956) [in Russian]Google Scholar
  63. N.N. Moiseyev, V.V. Rumyantsev, Dynamic Stability of Bodies Containing Fluid (Springer, New York, 1968)CrossRefGoogle Scholar
  64. M.V. Nezlin, Negative-energy waves and the anomalous Doppler effect. Sov. Phys. Uspekhi 19, 946–954 (1976)CrossRefGoogle Scholar
  65. E.L. Nicolai, On the stability of the rectilinear form of equilibrium of a bar in compression and torsion. Izvestia Leningradskogo Politechnicheskogo Instituta 31, 201–231 (1928)Google Scholar
  66. E.L. Nicolai, On the problem of the stability of a bar in torsion. Vestnik Mechaniki i Prikladnoi Matematiki 1, 41–58 (1929)Google Scholar
  67. O.M. O’Reilly, N.K. Malhotra, N.S. Namachchivaya, Reversible dynamical systems - dissipation-induced destabilization and follower forces. Appl. Math. Comput. 70, 273–282 (1995)MathSciNetMATHGoogle Scholar
  68. O.M. O’Reilly, N.K. Malhotra, N.S. Namachchivaya, Some aspects of destabilization in reversible dynamical systems with application to follower forces. Nonlinear Dyn. 10, 63–87 (1996)MathSciNetCrossRefGoogle Scholar
  69. L.A. Ostrovskii, S.A. Rybak, L.S. Tsimring, Negative energy waves in hydrodynamics. Sov. Phys. Usp. 29, 1040–1052 (1986)CrossRefGoogle Scholar
  70. M.P. Païdoussis, Fluid-Structure Interactions, 2nd edn. (Academic Press, Oxford, 2016)Google Scholar
  71. D. Phillips, S. Simpson, S. Hanna, Chapter 3 - optomechanical microtools and shape-induced forces, in Light Robotics: Structure-Mediated Nanobiophotonics, ed. by J. Glückstad, D. Palima (Elsevier, Amsterdam, 2017), pp. 65–98CrossRefGoogle Scholar
  72. L. Pigolotti, C. Mannini, G. Bartoli, Destabilizing effect of damping on the post-critical flutter oscillations of flat plates. Meccanica 52(13), 3149–3164 (2017)MathSciNetCrossRefGoogle Scholar
  73. S.M. Ramodanov, V.V. Sidorenko, Dynamics of a rigid body with an ellipsoidal cavity filled with viscous fluid. Int. J. Non-Lin. Mech. 95, 42–46 (2017)CrossRefGoogle Scholar
  74. P.H. Roberts, K. Stewartson, On the stability of a Maclaurin spheroid with small viscosity. Astrophys. J. 139, 777–790 (1963)CrossRefGoogle Scholar
  75. A. Rohlmann, T. Zander, M. Rao, G. Bergmann, Applying a follower load delivers realistic results for simulating standing. J. Biomech. 42, 1520–1526 (2009)CrossRefGoogle Scholar
  76. S. Ryu, Y. Sugiyama, Computational dynamics approach to the effect of damping on stability of a cantilevered column subjected to a follower force. Comput. Struct. 81, 265–271 (2003)CrossRefGoogle Scholar
  77. S.S. Saw, W.G. Wood, The stability of a damped elastic system with a follower force. J. Mech. Eng. Sci. 17(3), 163–176 (1975)CrossRefGoogle Scholar
  78. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101(R) (2011)CrossRefGoogle Scholar
  79. A.P. Seyranian, A.A. Mailybaev, Paradox of Nicolai and related effects. Z. angew. Math. Phys. 62, 539–548 (2011)MathSciNetCrossRefGoogle Scholar
  80. R.C. Shieh, E.F. Masur, Some general principles of dynamic instability of solid bodies. Z. Angew. Math. Phys. 19, 927–941 (1968)CrossRefGoogle Scholar
  81. S.H. Simpson, S. Hanna, First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E. 82, 031141 (2010)CrossRefGoogle Scholar
  82. D.M. Smith, The motion of a rotor carried by a flexible shaft in flexible bearings. Proc. R. Soc. Lond. A 142, 92–118 (1933)CrossRefGoogle Scholar
  83. K. Stewartson, On the stability of a spinning top containing liquid. J. Fluid Mech. 5, 577–592 (1959)MathSciNetCrossRefGoogle Scholar
  84. Y. Sugiyama, K. Kashima, H. Kawagoe, On an unduly simplified model in the non-conservative problems of elastic stability. J. Sound Vib. 45(2), 237–247 (1976)CrossRefGoogle Scholar
  85. S. Sukhov, A. Dogariu, Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017)MathSciNetCrossRefGoogle Scholar
  86. T. Theodorsen, General theory of aerodynamic instability and the mechanism of flutter. Technical Report no. 496. National Advisory Commitee for Aeronautics (NACA) (1935)Google Scholar
  87. W. Thomson, On an experimental illustration of minimum energy. Nature 23, 69–70 (1880)CrossRefGoogle Scholar
  88. W. Thomson, P.G. Tait, Treatise on Natural Philosophy (Cambridge University Press, Cambridge, 1879)MATHGoogle Scholar
  89. M. Tommasini, O.N. Kirillov, D. Misseroni, D. Bigoni, The destabilizing effect of external damping: singular flutter boundary for the Pflüger column with vanishing external dissipation. J. Mech. Phys. Sol. 91, 204–215 (2016)CrossRefGoogle Scholar
  90. F.E. Udwadia, Stability of dynamical systems with circulatory forces: generalization of the Merkin theorem. AIAA J. 55(9), 2853–2858 (2017)CrossRefGoogle Scholar
  91. A.I. Vesnitskii, A.V. Metrikin, Transition radiation in mechanics. Phys.-Uspekhi 39(10), 983–1007 (1996)CrossRefGoogle Scholar
  92. P. Wu, R. Huang, C. Tischer, A. Jonas, E.-L. Florin, Direct measurement of the nonconservative force field generated by optical tweezers. Phys. Rev. Lett. 103, 108101 (2009)CrossRefGoogle Scholar
  93. V.A. Yakubovich, V.M. Starzinskii, Linear Differential Equations with Periodic Coefficients, vols. 1 and 2 (Wiley, New York, 1975)Google Scholar
  94. R. Zhang, H. Qin, R.C. Davidson, J. Liu, J. Xiao, On the structure of the two-stream instability-complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes. Physics of Plasmas 23, 072111 (2016)CrossRefGoogle Scholar
  95. V.F. Zhuravlev, Decomposition of nonlinear generalized forces into potential and circulatory components. Doklady Phys. 52, 339–341 (2007)CrossRefGoogle Scholar
  96. V.F. Zhuravlev, Analysis of the structure of generalized forces in the Lagrange equations. Mech. Solids 43, 837–842 (2008)CrossRefGoogle Scholar
  97. H. Ziegler, Stabilitätsprobleme bei geraden Stäben und Wellen. Z. angew. Math. Phys. 2, 265–289 (1951a)MathSciNetCrossRefGoogle Scholar
  98. H. Ziegler, Ein nichtkonservatives Stabilitätsproblem. Z. angew. Math. Math. 8(9), 265–266 (1951b)Google Scholar
  99. H. Ziegler, Die Stabilitätskriterien der Elastomechanik. Arch. Appl. Mech. 20, 49–56 (1952)Google Scholar
  100. H. Ziegler, Linear elastic stability. A critical analysis of methods. First part. ZAMP Z. angew. Math. Phys. 4, 89–121 (1953a)CrossRefGoogle Scholar
  101. H. Ziegler, Linear elastic stability. A critical analysis of methods, Second part. ZAMP Z. angew. Math. Phys. 4, 167–185 (1953b)CrossRefGoogle Scholar
  102. H. Ziegler, On the concept of elastic stability. Adv. Appl. Mech. 4, 351–403 (1956)Google Scholar
  103. V.I. Zubov, Canonical structure of the vector force field, in Problems of Mechanics of Deformable Solid Bodies – Special issue dedicated to the 60th Birthday of Acad. V. V. Novozhilov (Sudostroenie, Leningrad, 1970), pp. 167–170. [in Russian]Google Scholar
  104. O.N. Kirillov, Localizing EP sets in dissipative systems and the self-stability of bicycles. arXiv:1806.03741 (2018)

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  1. 1.Northumbria UniversityNewcastle upon TyneUnited Kingdom

Personalised recommendations