Exercise Testing

  • Ali Altalag
  • Jeremy Road
  • Pearce Wilcox
  • Satvir S. Dhillon
  • Jordan A. GuenetteEmail author
Part of the In Clinical Practice book series (ICP)


Exercise tests are often used to develop an accurate profile of an individual’s functional exercise capacity. The results of exercise tests form the basis of exercise prescription and assist in identifying underlying physiological factors limiting exercise tolerance. Certain measures taken during exercise tests may be used to indicate disease severity and prognosis as well as to evaluate treatment responses in disease populations. Exercise tests are subdivided into laboratory and field tests as well as submaximal and maximal tests. This chapter will discuss the technical features and interpretation of the six minute walk test and cardiopulmonary exercise test.


Cardiopulmonary exercise testing Exercise test interpretation Walking tests 


  1. 1.
    American Thoracic Society. ATS statement: guidelines for the six-minute walk test. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. Am J Respir Crit Care Med. 2002;166(1):111–7.CrossRefGoogle Scholar
  2. 2.
    Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest. 2001;119(1):256–70.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bittner V, Weiner DH, Yusuf S, et al. Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators. JAMA. 1993;270(14):1702–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Enright PL, McBurnie MA, Bittner V, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387–98.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Enright PL, Sherrill DL. Reference equations for the six-minute walk in healthy adults. Am J Respir Crit Care Med. 1998;158(5 Pt 1):1384–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barst RJ, Rubin LJ, McGoon MD, Caldwell EJ, Long WA, Levy PS. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med. 1994;121(6):409–15.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Miyamoto S, Nagaya N, Satoh T, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161(2 Pt 1):487–92.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guyatt GH, Sullivan MJ, Thompson PJ, et al. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. CMAJ. 1985;132(8):919–23.Google Scholar
  9. 9.
    Lipkin DP, Scriven AJ, Crake T, Poole-Wilson PA. Six minute walking test for assessing exercise capacity in chronic heart failure. Br Med J (Clin Res Ed). 1986;292(6521):653.CrossRefGoogle Scholar
  10. 10.
    Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. Eur Respir J. 1999;14(2):270–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Stevens D, Elpern E, Sharma K, Szidon P, Ankin M, Kesten S. Comparison of hallway and treadmill six-minute walk tests. Am J Respir Crit Care Med. 1999;160(5):1540–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Enright PL. The six-minute walk test. Respir Care. 2003;48(8):783–5.PubMedGoogle Scholar
  14. 14.
    Jensen LA, Onyskiw JE, Prasad NG. Meta-analysis of arterial oxygen saturation monitoring by pulse oximetry in adults. Heart Lung. 1998;27(6):387–408.CrossRefPubMedGoogle Scholar
  15. 15.
    Barthelemy JC, Geyssant A, Riffat J, Antoniadis A, Berruyer J, Lacour JR. Accuracy of pulse oximetry during moderate exercise: a comparative study. Scand J Clin Lab Invest. 1990;50(5):533–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Singh SJ, Puhan MA, Andrianopoulos V, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447–78.CrossRefPubMedGoogle Scholar
  17. 17.
    American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.CrossRefGoogle Scholar
  18. 18.
    Casanova C, Celli BR, Barria P, et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur Respir J. 2011;37(1):150–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Gibbons WJ, Fruchter N, Sloan S, Levy RD. Reference values for a multiple repetition 6-minute walk test in healthy adults older than 20 years. J Cardiopulm Rehabil. 2001;21(2):87–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Turner SE, Eastwood PR, Cecins NM, Hillman DR, Jenkins SC. Physiologic responses to incremental and self-paced exercise in COPD: a comparison of three tests. Chest. 2004;126(3):766–73.CrossRefPubMedGoogle Scholar
  22. 22.
    Palange P, Forte S, Onorati P, Manfredi F, Serra P, Carlone S. Ventilatory and metabolic adaptations to walking and cycling in patients with COPD. J Appl Physiol (1985). 2000;88(5):1715–20.CrossRefGoogle Scholar
  23. 23.
    Man WD, Soliman MG, Gearing J, et al. Symptoms and quadriceps fatigability after walking and cycling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(5):562–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Poole GW, Maskell RC. Validation of continuous determination of respired gases during steady-state exercise. J Appl Physiol. 1975;38(4):736–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Spiro SG, Juniper E, Bowman P, Edwards RH. An increasing work rate test for assessing the physiological strain of submaximal exercise. Clin Sci Mol Med. 1974;46(2):191–206.PubMedGoogle Scholar
  26. 26.
    Hughson RL, Kowalchuk JM, Prime WM, Green HJ. Open-circuit gas exchange analysis in the non-steady-state. Can J Appl Sport Sci. 1980;5(1):15–8.PubMedGoogle Scholar
  27. 27.
    Beaver WL, Wasserman K, Whipp BJ. On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol. 1973;34(1):128–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Clark JS, Votteri B, Ariagno RL, et al. Noninvasive assessment of blood gases. Am Rev Respir Dis. 1992;145(1):220–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Zeballos RJ, Weisman IM. Behind the scenes of cardiopulmonary exercise testing. Clin Chest Med. 1994;15(2):193–213.PubMedGoogle Scholar
  30. 30.
    Killian KJ, Leblanc P, Martin DH, Summers E, Jones NL, Campbell EJ. Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis. 1992;146(4):935–40.CrossRefGoogle Scholar
  31. 31.
    Hamilton AL, Killian KJ, Summers E, Jones NL. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med. 1995;152(6):2021–31.CrossRefGoogle Scholar
  32. 32.
    Jones NL, Killian KJ. Exercise limitation in health and disease. N Engl J Med. 2000;343(9):632–41.CrossRefGoogle Scholar
  33. 33.
    Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis. 1984;129(2 Pt 2):S49–55.CrossRefGoogle Scholar
  34. 34.
    Robinson TE, Sue DY, Huszczuk A, Weiler-Ravell D, Hansen JE. Intra-arterial and cuff blood pressure responses during incremental cycle ergometry. Med Sci Sports Exerc. 1988;20(2):142–9.CrossRefGoogle Scholar
  35. 35.
    Wasserman K, Whipp BJ. Exercise physiology in health and disease. Am Rev Respir Dis. 1975;112(2):219–49.Google Scholar
  36. 36.
    Whipp BJ, Davis JA. The ventilatory stress of exercise in obesity. Am Rev Respir Dis. 1984;129(2 Pt 2):S90–2.CrossRefGoogle Scholar
  37. 37.
    Dempsey JA, Reddan W, Balke B, Rankin J. Work capacity determinants and physiologic cost of weight-supported work in obesity. J Appl Physiol. 1966;21(6):1815–20.CrossRefGoogle Scholar
  38. 38.
    West JB. Respiratory physiology: the essentials. 7th ed. Baltimore: Lippincott Williams & Wilkins; 2005.Google Scholar
  39. 39.
    Jones NL. Clinical exercise testing. 4th ed. Philadelphia: W. B. Saunders; 1997.Google Scholar
  40. 40.
    Wasserman K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.Google Scholar
  41. 41.
    Ekblom B, Astrand PO, Saltin B, Stenberg J, Wallstrom B. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24(4):518–28.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Weber KT, Wilson JR, Janicki JS, Likoff MJ. Exercise testing in the evaluation of the patient with chronic cardiac failure. Am Rev Respir Dis. 1984;129(2P2):S60–2.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Committee on Exercise Testing. ACC/AHA Guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 1997;30(1):260–311.CrossRefGoogle Scholar
  44. 44.
    Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol. 1985;55(10):D42–7.CrossRefGoogle Scholar
  45. 45.
    Janicki JS, Sheriff DD, Robotham JL, Wise RA. Cardiac output during exercise: contributions of the cardiac, circulatory and respiratory systems. In: Rowell LB, Shepard JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press; 1996. p. 649–704.Google Scholar
  46. 46.
    Dempsey JA, Babcock MA. An integrative view of limitations to muscular performance. Adv Exp Med Biol. 1995;384:393–9.CrossRefGoogle Scholar
  47. 47.
    Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999.Google Scholar
  48. 48.
    Lange Andersen K, Shephard RJ, Denolin H, Varnauskas E, Masironi R. Fundamentals of exercise testing. Geneva: World Health Organization; 1971.Google Scholar
  49. 49.
    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6.CrossRefGoogle Scholar
  50. 50.
    Tesch PA. Exercise performance and beta-blockade. Sports Med. 1985;2(6):389–412.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jones NL. Clinical exercise testing. 3rd ed. Philadelphia: WB Saunders Company; 1988.Google Scholar
  52. 52.
    Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain. 2003;126(Pt 2):413–23.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986;60(6):2020–7.CrossRefGoogle Scholar
  54. 54.
    Patessio A, Casaburi R, Carone M, Appendini L, Donner CF, Wasserman K. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993;148:622–6.CrossRefGoogle Scholar
  55. 55.
    Beaver WL, Wasserman K, Whipp BJ. Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol (1985). 1986;60(2):472–8.CrossRefGoogle Scholar
  56. 56.
    Hughson RL, Weisiger KH, Swanson GD. Blood lactate concentration increases as a continuous function in progressive exercise. J Appl Physiol (1985). 1987;62(5):1975–81.CrossRefGoogle Scholar
  57. 57.
    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30(8):1270–5.Google Scholar
  58. 58.
    Casaburi R, Porszasz J, Burns MR, Carithers ER, Chang RS, Cooper CB. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;155(5):1541–51.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Belman MJ, Epstein LJ, Doornbos D, Elashoff JD, Koerner SK, Mohsenifar Z. Noninvasive determinations of the anaerobic threshold. Reliability and validity in patients with COPD. Chest. 1992;102(4):1028–34.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Perloff D, Grim C, Flack J, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88(5):2460–70.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Weber KT, Janicki JS. Cardiopulmonary exercise testing: physiologic principles and clinical applications. Philadelphi: W. B. Saunders; 1986.Google Scholar
  62. 62.
    Dillard TA, Hnatiuk OW, McCumber TR. Maximum voluntary ventilation: spirometric determinants in chronic obstructive pulmonary disease patients and normal subjects. Am Rev Respir Dis. 1993;147(4):870–5.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dillard TA, Piantadosi S, Rajagopal KR. Prediction of ventilation at maximal exercise in chronic air-flow obstruction. Am Rev Respir Dis. 1985;132(2):230–5.Google Scholar
  64. 64.
    Salzman SH. Cardiopulmonary exercise testing. In: American College of Chest Physicians, editor. The ACCP Pulmonary Board Review. Basel: Karger; 2003. p. 363–80.Google Scholar
  65. 65.
    Johnson BD, Saupe KW, Dempsey JA. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol (1985). 1992;73(3):874–86.CrossRefGoogle Scholar
  66. 66.
    Gallagher CG, Brown E, Younes M. Breathing pattern during maximal exercise and during submaximal exercise with hypercapnia. J Appl Physiol (1985). 1987;63(1):238–44.CrossRefGoogle Scholar
  67. 67.
    Hey EN, Lloyd BB, Cunningham DJC, Jukes MGM, Bolton DPG. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir Physiol. 1966;1(2):193–205.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dempsey JA. J.B. Wolffe memorial lecture. Is the lung built for exercise? Med Sci Sports Exerc. 1986;18(2):143–55.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134(3):613–22.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Stickland MK, Butcher SJ, Marciniuk DD, Bhutani M. Assessing exercise limitation using cardiopulmonary exercise testing. Pulm Med. 2012;2012:824091.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Klas JV, Dempsey JA. Voluntary versus reflex regulation of maximal exercise flow: volume loops. Am Rev Respir Dis. 1989;139(1):150–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Laveneziana P, Guenette JA, Webb KA, O’Donnell DE. New physiological insights into dyspnea and exercise intolerance in chronic obstructive pulmonary disease patients. Expert Rev Respir Med. 2012;6(6):651–62.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    O’Donnell DE, Revill SM, Webb KA. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164(5):770–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Johnson BD, Weisman IM, Zeballos RJ, Beck KC. Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop. Chest. 1999;116(2):488–503.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bouhuys A. Respiratory dead space. In: Fenn WO, Rahn H, editors. Handbook of physiology. Section III, Vol. 1. Respiration. Washington, DC: American Phsyiological Society; 1964. p. 699–714.Google Scholar
  76. 76.
    Bohr C. Ueber die lungenathmung. Skand Arch Physiol. 1891;2:236–68.CrossRefGoogle Scholar
  77. 77.
    Johnson BD, Dempsey JA. Demand vs. capacity in the aging pulmonary system. Exerc Sport Sci Rev. 1991;19(1):171–210.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ries AL, Farrow JT, Clausen JL. Accuracy of two ear oximeters at rest and during exercise in pulmonary patients. Am Rev Respir Dis. 1985;132(3):685–9.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Severinghaus JW, Naifeh KH, Koh SO. Errors in 14 pulse oximeters during profound hypoxia. J Clin Monit. 1989;5(2):72–81.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    American Association for Respiratory Care. AARC clinical practice guideline: exercise testing for evaluation of hypoxemia and/or desaturation. Respir Care. 1992;37(8):907–12.Google Scholar
  81. 81.
    American Thoracic Society. Pulmonary function laboratory management and procedure manual. New York: American Thoracic Society; 1998.Google Scholar
  82. 82.
    Francis GS, Goldsmith SR, Ziesche S, Nakajima H, Cohn JN. Relative attenuation of sympathetic drive during exercise in patients with congestive heart failure. J Am Coll Cardiol. 1985;5(4):832–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Hansen JE, Casaburi R, Cooper DM, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1988;57(2):140–5.CrossRefPubMedGoogle Scholar
  84. 84.
    Jones S, Elliott PM, Sharma S, McKenna WJ, Whipp BJ. Cardiopulmonary responses to exercise in patients with hypertrophic cardiomyopathy. Heart. 1998;80(1):60–7.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    West JB. Ventilation/blood flow and gas exchange. 5th ed. Oxford: Blackwell Scientific [distributed by Year Book (Chicago, IL)]; 1990.Google Scholar
  86. 86.
    Kadikar A, Maurer J, Kesten S. The six-minute walk test: a guide to assessment for lung transplantation. J Heart Lung Transplant. 1997;16(3):313–9.PubMedGoogle Scholar
  87. 87.
    Holden DA, Rice TW, Stelmach K, Meeker DP. Exercise testing, 6-min walk, and stair climb in the evaluation of patients at high risk for pulmonary resection. Chest. 1992;102(6):1774–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Sciurba FC, Rogers RM, Keenan RJ, et al. Improvement in pulmonary function and elastic recoil after lung-reduction surgery for diffuse emphysema. N Engl J Med. 1996;334(17):1095–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Criner GJ, Cordova FC, Furukawa S, et al. Prospective randomized trial comparing bilateral lung volume reduction surgery to pulmonary rehabilitation in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):2018–27.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Sinclair DJ, Ingram CG. Controlled trial of supervised exercise training in chronic bronchitis. Br Med J. 1980;280(6213):519–21.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Roomi J, Johnson MM, Waters K, Yohannes A, Helm A, Connolly MJ. Respiratory rehabilitation, exercise capacity and quality of life in chronic airways disease in old age. Age Ageing. 1996;25(1):12–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Paggiaro PL, Dahle R, Bakran I, Frith L, Hollingworth K, Efthimiou J. Multicentre randomised placebo-controlled trial of inhaled fluticasone propionate in patients with chronic obstructive pulmonary disease. International COPD Study Group. Lancet. 1998;351(9105):773–80.CrossRefPubMedGoogle Scholar
  93. 93.
    Spence DP, Hay JG, Carter J, Pearson MG, Calverley PM. Oxygen desaturation and breathlessness during corridor walking in chronic obstructive pulmonary disease: effect of oxitropium bromide. Thorax. 1993;48(11):1145–50.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    De Bock V, Mets T, Romagnoli M, Derde MP. Captopril treatment of chronic heart failure in the very old. J Gerontol. 1994;49(3):M148–52.CrossRefPubMedGoogle Scholar
  95. 95.
    Bernstein ML, Despars JA, Singh NP, Avalos K, Stansbury DW, Light RW. Re-analysis of the 12-minute walk in patients with chronic obstructive pulmonary disease. Chest. 1994;105(1):163–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Hajiro T, Nishimura K, Tsukino M, Ikeda A, Koyama H, Izumi T. Analysis of clinical methods used to evaluate dyspnea in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(4):1185–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Gulmans VA, van Veldhoven NH, de Meer K, Helders PJ. The six-minute walking test in children with cystic fibrosis: reliability and validity. Pediatr Pulmonol. 1996;22(2):85–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Nixon PA, Joswiak ML, Fricker FJ. A six-minute walk test for assessing exercise tolerance in severely ill children. J Pediatr. 1996;129(3):362–6.CrossRefPubMedGoogle Scholar
  99. 99.
    Mathai SC, Suber T, Khair RM, Kolb TM, Damico RL, Hassoun PM. Health-related quality of life and survival in pulmonary arterial hypertension. Ann Am Thorac Soc. 2016;13(1):31–9.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bittner V. Six-minute walk test in patients with cardiac dysfunction. Cardiologia. 1997;42(9):897–902.PubMedGoogle Scholar
  101. 101.
    Peeters P, Mets T. The 6-minute walk as an appropriate exercise test in elderly patients with chronic heart failure. J Gerontol A Biol Sci Med Sci. 1996;51(4):M147–51.CrossRefPubMedGoogle Scholar
  102. 102.
    Zugck C, Kruger C, Durr S, et al. Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy? Eur Heart J. 2000;21(7):540–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Cahalin LP, Mathier MA, Semigran MJ, Dec GW, DiSalvo TG. The six-minute walk test predicts peak oxygen uptake and survival in patients with advanced heart failure. Chest. 1996;110(2):325–32.CrossRefPubMedGoogle Scholar
  104. 104.
    Cote CG, Celli BR. In patients with COPD, the 6 minute walking distance is a better predictor of health care utilization than FEV1, blood gases, and dyspnea. Eur Respir J. 1998;383.Google Scholar
  105. 105.
    Kessler R, Faller M, Fourgaut G, Mennecier B, Weitzenblum E. Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159(1):158–64.CrossRefPubMedGoogle Scholar
  106. 106.
    Cahalin L, Pappagianopoulos P, Prevost S, Wain J, Ginns L. The relationship of the 6-min walk test to maximal oxygen consumption in transplant candidates with end-stage lung disease. Chest. 1995;108(2):452–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Pratter MR, Curley FJ, Dubois J, Irwin RS. Cause and evaluation of chronic dyspnea in a pulmonary disease clinic. Arch Intern Med. 1989;149(10):2277–82.CrossRefPubMedGoogle Scholar
  108. 108.
    Martinez FJ, Stanopoulos I, Acero R, Becker FS, Pickering R, Beamis JF. Graded comprehensive cardiopulmonary exercise testing in the evaluation of dyspnea unexplained by routine evaluation. Chest. 1994;105(1):168–74.CrossRefPubMedGoogle Scholar
  109. 109.
    Weisman IM, Zeballos RJ. Clinical evaluation of unexplained dyspnea. Cardiologia. 1996;41(7):621–34.PubMedGoogle Scholar
  110. 110.
    Sridhar MK, Carter R, Banham SW, Moran F. An evaluation of integrated cardiopulmonary exercise testing in a pulmonary function laboratory. Scott Med J. 1995;40(4):113–6.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Gay SE, Weisman IM, Flaherty KR, Martinez FJ. Cardiopulmonary exercise testing in unexplained dyspnea. In: Weisman IM, Zeballos RJ, editors. Clinical exercise testing. Basel: Karger; 2002. p. 81–8.CrossRefGoogle Scholar
  112. 112.
    Weisman IM, Zeballos RJ. A step approach to the evaluation of unexplained dyspnea: the role of cardiopulmonary exercise testing. Pulm Perspect. 1998;15:8–11.Google Scholar
  113. 113.
    Zeballos RJ, Weisman IM, Connery SM, Bradley JP. Standard treadmill (STE) vs incremental cycle ergometry (IET) in the evaluation of airway hyperreactivity in unexplained dyspnea. Am J Respir Crit Care Med. 1999;159:A419.Google Scholar
  114. 114.
    Punzal PA, Ries AL, Kaplan RM, Prewitt LM. Maximum intensity exercise training in patients with chronic obstructive pulmonary disease. Chest. 1991;100(3):618–23.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Ries AL. The importance of exercise in pulmonary rehabilitation. Clin Chest Med. 1994;15(2):327–37.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner CF, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143(1):9–18.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Bolliger CT, Jordan P, Solèr M, et al. Exercise capacity as a predictor of postoperative complications in lung resection candidates. Am J Respir Crit Care Med. 1995;151(5):1472–80.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bolliger CT, Perruchoud AP. Functional evaluation of the lung resection candidate. Eur Respir J. 1998;11(1):198–212.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Morice RC, Peters EJ, Ryan MB, Putnam JB, Ali MK, Roth JA. Redefining the lowest exercise peak oxygen consumption acceptable for lung resection of high risk patients. Chest. 1996;110:161S.Google Scholar
  120. 120.
    Howard DK, Iademarco EJ, Trulock EP. The role of cardiopulmonary exercise testing in lung and heart-lung transplantation. Clin Chest Med. 1994;15(2):405–20.PubMedGoogle Scholar
  121. 121.
    Williams RJ, Slater WR. Role of cardiopulmonary exercise in lung and heart–lung transplantation. In: Weisman IM, Zeballos RJ, editors. Progress in respiratory research. Clinical exercise testing. Vol 32. Basel: Karger; 2002. p. 254–63.Google Scholar
  122. 122.
    Stelken AM, Younis LT, Jennison SH, et al. Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol. 1996;27(2):345–52.CrossRefPubMedGoogle Scholar
  123. 123.
    Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.CrossRefPubMedGoogle Scholar
  124. 124.
    Gallagher CG. Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease. Clin Chest Med. 1994;15(2):305–26.PubMedGoogle Scholar
  125. 125.
    O’Donnell DE, Flüge T, Gerken F, Hamilton A, Webb K, Aguilaniu B, Make B, Magnussen H. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004;23(6):832–40.Google Scholar
  126. 126.
    Janicki JS, Weber KT, Likoff MJ, Fishman AP. Exercise testing to evaluate patients with pulmonary vascular disease. Am Rev Respir Dis. 1984;129(2 Pt 2):S93–5.CrossRefPubMedGoogle Scholar
  127. 127.
    D’Alonzo GE, Gianotti L, Dantzker DR. Noninvasive assessment of hemodynamic improvement during chronic vasodilator therapy in obliterative pulmonary hypertension. Am Rev Respir Dis. 1986;133(3):380–4.PubMedGoogle Scholar
  128. 128.
    Systrom DM, Cockrill BA, Hales CA. Role of cardiopulmonary exercise testing in patients with pulmonary vascular disease. In: Weisman IM, Zeballos RJ, editors. Progress in respiratory research. Vol 32. Basel: Karger; 2002. p. 200–4.Google Scholar
  129. 129.
    Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229–42.CrossRefPubMedGoogle Scholar
  130. 130.
    Dodd JD, Barry SC, Daly LE, Gallagher CG. Inhaled beta-agonists improve lung function but not maximal exercise capacity in cystic fibrosis. J Cyst Fibros. 2005;4(2):101–5.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Cotes JE, Zejda J, King B. Lung function impairment as a guide to exercise limitation in work-related lung disorders. Am Rev Respir Dis. 1988;137:1089–93.Google Scholar
  132. 132.
    Becklake MR, Rodarte JR, Kalica AR. NHLBI workshop summary. Scientific issues in the assessment of respiratory impairment. Am Rev Respir Dis. 1988;137(6):1505–10.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Cotes JE. Rating respiratory disability: a report on behalf of a working group of the European Society for Clinical Respiratory Physiology. Eur Respir J. 1990;3(9):1074–7.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Cotes JE. Lung function: assessment and application in medicine. 5th ed. London: Blackwell Scientific Publications; 1993.Google Scholar
  135. 135.
    Smith DD. Pulmonary impairment/disability evaluation: controversies and criticisms. Clin Pulm Med. 1995;2(6):334–43.CrossRefGoogle Scholar
  136. 136.
    Sue DY. Exercise testing in the evaluation of impairment and disability. Clin Chest Med. 1994;15(2):369–87.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161(1):309–29.CrossRefGoogle Scholar
  138. 138.
    Sterk PJ, Fabbri LM, Quanjer PH, et al. Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:53–83.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    European Respiratory Society. Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. ERS Task Force on Standardization of Clinical Exercise Testing. Eur Respir J. 1997;10(11):2662–89.CrossRefGoogle Scholar
  140. 140.
    Roca J, Whipp BJ. European respiratory monograph 6: clinical exercise testing. Lausanne: European Respiratory Society; 1997.Google Scholar
  141. 141.
    Garfinkel SK, Kesten S, Chapman KR, Rebuck AS. Physiologic and nonphysiologic determinants of aerobic fitness in mild to moderate asthma. Am Rev Respir Dis. 1992;145(4 Pt 1):741–5.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Weisman IM, Zeballos RJ. An integrated approach to the interpretation of cardiopulmonary exercise testing. Clin Chest Med. 1994;15(2):421–45.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Weisman IM, Zeballos RJ. Clinical exercise testing. Clin Chest Med Dec. 2001;22(4):679–701.CrossRefGoogle Scholar
  144. 144.
    Carlin BW, Clausen JL, Ries AL. The effects of exercise testing on the prescription of oxygen therapy. Chest. 1994;106(2):361–5.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Dean NC, Brown JK, Himelman RB, Doherty JJ, Gold WM, Stulbarg MS. Oxygen may improve dyspnea and endurance in patients with chronic obstructive pulmonary disease and only mild hypoxemia. Am Rev Respir Dis. 1992;146:941–5.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2000.Google Scholar
  147. 147.
    Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104(4):429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Löllgen H, Ulmer HV, Crean P. Recommendations and standard guidelines for exercise testing: a report of the task force conference on ergometry. Eur Heart J. 1988;9(Suppl K):1–37.CrossRefGoogle Scholar
  149. 149.
    Shephard RJ. Tests of maximum oxygen intake. A critical review. Sports Med. 1984;1(2):99–124.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ali Altalag
    • 1
  • Jeremy Road
    • 2
  • Pearce Wilcox
    • 2
  • Satvir S. Dhillon
    • 3
  • Jordan A. Guenette
    • 3
    • 4
    • 5
    Email author
  1. 1.Prince Sultan Military Medical CityRiyadhSaudi Arabia
  2. 2.University of British ColumbiaVancouverCanada
  3. 3.Cardiopulmonary Exercise Physiology LaboratorySt. Paul’s HospitalVancouverCanada
  4. 4.Department of Physical TherapyUniversity of British ColumbiaVancouverCanada
  5. 5.Centre for Heart Lung Innovation, St. Paul’s HospitalVancouverCanada

Personalised recommendations