Advertisement

Approach to PFT Interpretation

  • Ali AltalagEmail author
  • Jeremy Road
  • Pearce Wilcox
  • Kewan Aboulhosn
Chapter
Part of the In Clinical Practice book series (ICP)

Abstract

This chapter provides a structured approach to analyzing and interpreting the many data points necessary to provide an accurate assessment of normal and abnormal pulmonary function tests. Spirometry provides the foundation of all PFT assessments followed by lung volume and gas transfer interpretation. By the end of this chapter we hope to provide a reproducible and reliable framework for PFT interpretation.

Keywords

Volume-Time curve Flow-volume curve Flow-volume loop Spirometry Lung volume study Gas transfer 

References

  1. 1.
    Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.CrossRefGoogle Scholar
  2. 2.
    American Thoracic Society. Standardization of spirometry update. Am J Respir Crit Care Med. 1995;152:1107–36.CrossRefGoogle Scholar
  3. 3.
    Dykstra BJ, Scanlon PD, Kester MM, Beck KC, Enright PL. Lung volumes in 4,774 patients with obstructive lung disease. Chest. 1999;115:68–74.CrossRefGoogle Scholar
  4. 4.
    Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment? Chest. 1999;115:869–73.CrossRefGoogle Scholar
  5. 5.
    Glady CA, Aaron SD, Lunau M, Clinch J, Dales RE. A spirometry-based algorithm to direct lung function testing in the pulmonary function laboratory. Chest. 2003;123:1939–46.CrossRefGoogle Scholar
  6. 6.
    Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.CrossRefGoogle Scholar
  7. 7.
    Cerveri I, Pellegrino R, Dore R, Corsico A, Fulgoni P, van de Woestijne KP, Brusasco V. Mechanisms for isolated volume response to a bronchodilator in patients with COPD. J Appl Physiol. 2000;88:1989–95.CrossRefGoogle Scholar
  8. 8.
    Flenley DC. Chronic obstructive pulmonary disease. Dis Mon. 1988;34:537–99.CrossRefGoogle Scholar
  9. 9.
    MacIntyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–35.CrossRefGoogle Scholar
  10. 10.
    Viegi G, Baldi S, Begliomini E, Ferdeghini EM, Pistelli F. Single breath diffusing capacity for carbon monoxide: effects of adjustment for inspired volume dead space, carbon dioxide, hemoglobin and carboxyhemoglobin. Respiration. 1998;65:56–62.CrossRefGoogle Scholar
  11. 11.
    Mohsenifar Z, Brown HV, Schnitzer B, Prause JA, Koerner SK. The effect of abnormal levels of hematocrit on the single breath diffusing capacity. Lung. 1982;160:325–30.CrossRefGoogle Scholar
  12. 12.
    Clark EH, Woods RL, Hughes JM. Effect of blood transfusion on the carbon monoxide transfer factor of the lung in man. Clin Sci Mol Med. 1978;54:627–31.PubMedGoogle Scholar
  13. 13.
    Cotes JE, Dabbs JM, Elwood PC, Hall AM, McDonald A, Saunders MJ. Iron-deficiency anaemia: its effect on transfer factor for the lung (diffusiong capacity) and ventilation and cardiac frequency during sub-maximal exercise. Clin Sci. 1972;42:325–35.CrossRefGoogle Scholar
  14. 14.
    Marrades RM, Diaz O, Roca J, Campistol JM, Torregrosa JV, Barberà JA, Cobos A, Félez MA, Rodriguez-Roisin R. Adjustment of DLCO for hemoglobin concentration. Am J Respir Crit Care Med. 1997;155:236–41.CrossRefGoogle Scholar
  15. 15.
    Hancox B, Whyte K. Bob pocket guide to lung function tests. 1st ed. Sydney: McGraw-Hill; 2001.Google Scholar
  16. 16.
    Pride NB, Macklem PT. Lung mechanics in disease. In: Macklem PT, Mead J, editors. Handbook of physiology. The respiratory system. Mechanics of breathing. Section 3, vol. 3, Part 2. Bethesda, MD: American Physiological Society; 1986. p. 659–92.Google Scholar
  17. 17.
    Henderson JC, O’Connell F, Fuller RW. Decrease of histamine induced bronchoconstriction by caffeine in mild asthma. Thorax. 1993;48:824–6.CrossRefGoogle Scholar
  18. 18.
    Cotton DJ, Prabhu MB, Mink JT, Graham BL. Effects of ventilation inhomogeneity on DLcoSB-3EQ in normal subjects. J Appl Physiol. 1992;73:2623–30.CrossRefGoogle Scholar
  19. 19.
    Cotton DJ, Prabhu MB, Mink JT, Graham BL. Effect of ventilation inhomogeneity on “intrabreath” measurements of diffusing capacity in normal subjects. J Appl Physiol. 1993;75:927–32.CrossRefGoogle Scholar
  20. 20.
    Gelb AF, Gold WM, Wright RR, Bruch HR, Nadel JA. Physiologic diagnosis of subclinical emphysema. Am Rev Respir Dis. 1973;107:50–63.CrossRefGoogle Scholar
  21. 21.
    Morrison NJ, Abboud RT, Ramadan F, Miller RR, Gibson NN, Evans KG, Nelems B, Müller NL. Comparison of single breath carbon monoxide diffusing capacity and pressure-volume curves in detecting emphysema. Am Rev Respir Dis. 1989;139:1179–87.CrossRefGoogle Scholar
  22. 22.
    Hyatt RE, Scanlon PD, Nakamura M. Interpretation of pulmonary function tests, a practical guide. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003.Google Scholar
  23. 23.
    Malcolm ATS, Gary C. Respiratory muscle testing: tests of respiratory muscle strength. Am J Respir Crit Care Med. 2002;166:518–624.CrossRefGoogle Scholar
  24. 24.
    Green M. Respiratory muscle testing. Bull Eur Physiopathol Respir. 1984;20:433–5.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Salzman J. Pulmonary function testing. Tips on how to interpret the results. J Respir Dis. 1999;20:809–22.Google Scholar
  26. 26.
    Gilbert R, Auchincloss JH. What is a “restrictive” defect? Arch Intern Med. 1986;146:1779–81.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ali Altalag
    • 1
    Email author
  • Jeremy Road
    • 2
  • Pearce Wilcox
    • 2
  • Kewan Aboulhosn
    • 3
  1. 1.Prince Sultan Military Medical CityRiyadhSaudi Arabia
  2. 2.University of British ColumbiaVancouverCanada
  3. 3.University of British ColumbiaVictoriaCanada

Personalised recommendations