Advertisement

Spirometry

  • Ali AltalagEmail author
  • Jeremy Road
  • Pearce Wilcox
  • Kewan Aboulhosn
Chapter
Part of the In Clinical Practice book series (ICP)

Abstract

Spirometry represents the foundation of pulmonary function testing and in most instances spirometry derived measurements are the most clinically relevant. In spirometry, a device called a spirometer is used to measure certain lung volumes, called dynamic lung volumes. The two most important dynamic lung volumes measured are the forced vital capacity (FVC) and the forced expiratory volume in the first second (FEV1). This section deals with the definitions, physiology and clinical applicability of these and other spirometric measurements.

Keywords

Spirometry Vital capacity Forced vital capacity (FVC) Forced expiratory volume in the first second (FEV1Flow-volume curve Flow-volume loop Volume-time curve Obstructive disorder Restrictive disorder 

References

  1. 1.
    Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.CrossRefGoogle Scholar
  2. 2.
    American Thoracic Society. Standardization of spirometry, 1994 update. Am J Respir Crit Care Med. 1995;152:1107–36.CrossRefGoogle Scholar
  3. 3.
    Paoletti P, Pistelli G, Fazzi P. Reference values for vital capacity and flow-volume curves from a general population study. Bull Eur Physiopathol Respir. 1986;22:451–9.PubMedGoogle Scholar
  4. 4.
    Brusasco V, Pellegrino R, Rodarte JR. Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories. Eur Respir J. 1997;10:1316–20.CrossRefGoogle Scholar
  5. 5.
    Hansen LM, Pedersen OF, Lyager S, Naeraa N. Method related differences in vital capacity. Ugeskr Laeger. 1983;145:2752–6.PubMedGoogle Scholar
  6. 6.
    Swanney MP, Jensen RL, Crichton DA, Beckert LE, Cardno LA, Crapo RO. FEV(6) is an acceptable surrogate for FVC in the spirometric diagnosis of airway obstruction and restriction. Am J Respir Crit Care Med. 2000;162:917–9.CrossRefGoogle Scholar
  7. 7.
    Hardie JA, Buist AS, Vollmer WM, Ellingsen I, Bakke PS, Mørkve O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur Respir J. 2002;20:1117–22.CrossRefGoogle Scholar
  8. 8.
    Hyatt RE, Scanlon PD, Nakamura M. Interpretation of pulmonary function tests, a practical guide. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003.Google Scholar
  9. 9.
    Hancox B, Whyte K. Bob pocket guide to lung function tests. 1st ed. Sydney: McGraw-Hill; 2001.Google Scholar
  10. 10.
    Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.CrossRefGoogle Scholar
  11. 11.
    Flenley DC. Chronic obstructive pulmonary disease. Dis Mon. 1988;34:537–99.CrossRefGoogle Scholar
  12. 12.
    Gardner RM, Clausen JL, Crapo RO, Epler GR, Hankinson JL, Johnson JL, Plummer AL. Quality assurance in pulmonary function laboratories. Am Rev Respir Dis. 1986;134:625–7.PubMedGoogle Scholar
  13. 13.
    Association for the Advancement of Medical Instrumentation, Standard for spirometers (draft), October 1980. AAMI Suite 602, 1901 N. Ft. Myer Drive, Arlington, VA 22209–1699.Google Scholar
  14. 14.
    Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. Eur Respir J. 2005;26:153–61.CrossRefGoogle Scholar
  15. 15.
    Renzetti AD Jr. Standardization of spirometry. Am Rev Respir Dis. 1979;119:831–8.Google Scholar
  16. 16.
    Morris A, Kanner R, Crapo R, Gardner R. Clinical pulmonary function testing: a manual of uniform laboratory procedures title. 2nd ed. Salt Lake City, UT: Intermountain Thoracic Society; 1984.Google Scholar
  17. 17.
    Smith A, Gaensler R. Timing of forced expiratory volume in one second. Am Rev Respir Dis. 1982;126:362–4.Google Scholar
  18. 18.
    Hankinson JL, Gardner RM. Standard waveforms for spirometer testing. Am Rev Respir Dis. 1982;126:362–4.PubMedGoogle Scholar
  19. 19.
    Horvath EJ. Manual of spirometry in occupational medicine. Cincinnati, OH: Division of Training and Manpower Development, National Institutes for Occupational Safety and Health; 1981.Google Scholar
  20. 20.
    Stoller JK, Basheda S, Laskowski D, Goormastic M, McCarthy K. Trial of standard versus modified expiration to achieve end-of-test spirometry criteria. Am Rev Respir Dis. 1993;148:275–80.CrossRefGoogle Scholar
  21. 21.
    Townsend MC. The effects of leaks in spirometers on measurements of pulmonary function. The implications for epidemiologic studies. J Occup Med. 1984;26:835–41.CrossRefGoogle Scholar
  22. 22.
    Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ATS Workshop on Lung Volume Measurements. Official Statement of The European Respiratory Society. Eur Respir J. 1995;8:492–506.CrossRefGoogle Scholar
  23. 23.
    Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Eur Respir J. 1993;6(Suppl 16):5–40.CrossRefGoogle Scholar
  24. 24.
    Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J. 1993;6(Suppl 16):41–52.CrossRefGoogle Scholar
  25. 25.
    Solberg HE, Gräsbeck R. Reference values. Adv Clin Chem. 1989;27:1–79.CrossRefGoogle Scholar
  26. 26.
    American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis. 1991;144:1202–18.CrossRefGoogle Scholar
  27. 27.
    Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40:1324–43.CrossRefGoogle Scholar
  28. 28.
    Parker JM, Dillard TA, Phillips YY. Arm span-height relationships in patients referred for spirometry. Am J Respir Crit Care Med. 1996;154:533–6.CrossRefGoogle Scholar
  29. 29.
    Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med. 2000;161:1101–8.CrossRefGoogle Scholar
  30. 30.
    Sharp DS, Enright PL, Chiu D, Burchfiel CM, Rodriguez BL, Curb JD. Reference values for pulmonary function tests of Japanese-American men aged 71 to 90 years. Am J Respir Crit Care Med. 1996;153:805–11.CrossRefGoogle Scholar
  31. 31.
    Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. GOLD Scientific Committee Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop Summary. Am J Respir Crit Care Med. 2001;163:1256–76.CrossRefGoogle Scholar
  32. 32.
    Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease Updated; 2015.Google Scholar
  33. 33.
    American Thoracic Society. Evaluation of impairment/disability secondary to respiratory disorders. Am Rev Respir Dis. 1986;133:1205–9.Google Scholar
  34. 34.
    American Medical Association. Guides to the evaluation of permanent impairment. 4th ed. Chicago, IL: American Medical Association; 1995.Google Scholar
  35. 35.
    Glady CA, Aaron SD, Lunau M, Clinch J, Dales RE. A spirometry-based algorithm to direct lung function testing in the pulmonary function laboratory. Chest. 2003;123:1939–46.CrossRefGoogle Scholar
  36. 36.
    Guyatt GH, Townsend M, Nogradi S, Pugsley SO, Keller JL, Newhouse MT. Acute response to bronchodilator. An imperfect guide for bronchodilator therapy in chronic airflow limitation. Arch Intern Med. 1988;148:1949–52.CrossRefGoogle Scholar
  37. 37.
    D’Urzo A. Spirometry in primary care practices. CMAJ. 2009;180:429–30; author reply 430.CrossRefGoogle Scholar
  38. 38.
    Ferguson GT, Enright PL, Buist S, Higgins MW. Office Spirometry for Lung Health Assessment in Adults *A Consensus Statement from the National Lung Health Education Program. Chest J. 2000;117:1146–61.CrossRefGoogle Scholar
  39. 39.
    Bhatt SP, Kim Y-I, Wells JM, et al. FEV(1)/FEV(6) to diagnose airflow obstruction. Comparisons with computed tomography and morbidity indices. Ann Am Thorac Soc. 2014;11:335–41.CrossRefGoogle Scholar
  40. 40.
    Jing J. Should FEV1/FEV6 replace FEV1/FVC ratio to detect airway obstruction? Chest J. 2009;135:991.CrossRefGoogle Scholar
  41. 41.
    Brand PL, Quanjer PH, Postma DS, Kerstjens HA, Koëter GH, Dekhuijzen PN, Sluiter HJ. Interpretation of bronchodilator response in patients with obstructive airways disease. The Dutch Chronic Non-Specific Lung Disease (CNSLD) Study Group. Thorax. 1992;47:429–36.CrossRefGoogle Scholar
  42. 42.
    Coates AL, Allen PD, MacNeish CF, Ho SL, Lands LC. Effect of size and disease on estimated deposition of drugs administered using jet nebulization in children with cystic fibrosis. Chest. 2001;119:1123–30.CrossRefGoogle Scholar
  43. 43.
    Coates AL, Ho SL. Drug administration by jet nebulization. Pediatr Pulmonol. 1998;26:412–23.CrossRefGoogle Scholar
  44. 44.
    Newman SP, Clark AR, Talaee N, Clarke SW. Pressurised aerosol deposition in the human lung with and without an “open” spacer device. Thorax. 1989;44:706–10.CrossRefGoogle Scholar
  45. 45.
    Tal A, Golan H, Grauer N, Aviram M, Albin D, Quastel ME. Deposition pattern of radiolabeled salbutamol inhaled from a metered-dose inhaler by means of a spacer with mask in young children with airway obstruction. J Pediatr. 1996;128:479–84.CrossRefGoogle Scholar
  46. 46.
    Newhouse MT. Asthma therapy with aerosols: are nebulizers obsolete? A continuing controversy. J Pediatr. 1999;135:5–8.CrossRefGoogle Scholar
  47. 47.
    Coates AL, MacNeish CF, Lands LC, Meisner D, Kelemen S, Vadas EB. A comparison of the availability of tobramycin for inhalation from vented vs unvented nebulizers. Chest. 1998;113:951–6.CrossRefGoogle Scholar
  48. 48.
    Devadason SG, Everard ML, Linto JM, Le Souëf PN. Comparison of drug delivery from conventional versus “Venturi” nebulizers. Eur Respir J. 1997;10:2479–83.CrossRefGoogle Scholar
  49. 49.
    Leach CL, Davidson PJ, Hasselquist BE, Boudreau RJ. Lung deposition of hydrofluoroalkane-134a beclomethasone is greater than that of chlorofluorocarbon fluticasone and chlorofluorocarbon beclomethasone: a cross-over study in healthy volunteers. Chest. 2002;122:510–6.CrossRefGoogle Scholar
  50. 50.
    Cerveri I, Pellegrino R, Dore R, Corsico A, Fulgoni P, van de Woestijne KP, Brusasco V. Mechanisms for isolated volume response to a bronchodilator in patients with COPD. J Appl Physiol. 2000;88:1989–95.CrossRefGoogle Scholar
  51. 51.
    Bates JH, Brown KA, Kochi T. Respiratory mechanics in the normal dog determined by expiratory flow interruption. J Appl Physiol. 1989;67:2276–85.CrossRefGoogle Scholar
  52. 52.
    Wilson AF, editor. Pulmonary function testing, indications and interpretations. Orlando, FL: Grune & Stratton; 1985.Google Scholar
  53. 53.
    Pride NB, Macklem PT. Lung mechanics in disease. In: Macklem PT, Mead J, editors. Handbook of physiology. The respiratory system. Mechanics of breathing. Section 3, vol. 3, Part 2. Bethesda, MD: American Physiological Society; 1986. p. 659–92.Google Scholar
  54. 54.
    Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment? Chest. 1999;115:869–73.CrossRefGoogle Scholar
  55. 55.
    Miller MR, Pincock AC, Oates GD, Wilkinson R, Skene-Smith H. Upper airway obstruction due to goitre: detection, prevalence and results of surgical management. Q J Med. 1990;74:177–88.PubMedGoogle Scholar
  56. 56.
    Miller RD, Hyatt RE. Obstructing lesions of the larynx and trachea: clinical and physiologic characteristics. Mayo Clin Proc. 1969;44:145–61.PubMedGoogle Scholar
  57. 57.
    Pedersen OF, Ingram RH. Configuration of maximum expiratory flow-volume curve: model experiments with physiological implications. J Appl Physiol. 1985;58:1305–13.CrossRefGoogle Scholar
  58. 58.
    Miller MR, Pedersen OF. Peak flowmeter resistance decreases peak expiratory flow in subjects with COPD. J Appl Physiol. 2000;89:283–90.CrossRefGoogle Scholar
  59. 59.
    Gibson GJ. Clinical tests of respiratory function. 2nd ed. New York, NY: Taylor & Francis; 1998.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ali Altalag
    • 1
    Email author
  • Jeremy Road
    • 2
  • Pearce Wilcox
    • 2
  • Kewan Aboulhosn
    • 3
  1. 1.Prince Sultan Military Medical CityRiyadhSaudi Arabia
  2. 2.University of British ColumbiaVancouverCanada
  3. 3.University of British ColumbiaVictoriaCanada

Personalised recommendations