Advertisement

Efficient Bit-Decomposition and Modulus-Conversion Protocols with an Honest Majority

  • Ryo KikuchiEmail author
  • Dai Ikarashi
  • Takahiro Matsuda
  • Koki Hamada
  • Koji Chida
Conference paper
  • 1.2k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10946)

Abstract

In this paper, we propose secret-sharing-based bit-decomposition and modulus-conversion protocols for a prime order ring \(\mathbb {Z}_p\) with an honest majority: an adversary can corrupt \(k-1\) parties of n parties and \(2k-1 \le n\). Our protocols are secure against passive and active adversaries depending on the components of our protocols. We assume a secret is an \(\ell \)-bit element and \(2^{\ell +\lceil \log m \rceil } < p\), where \(m= k\) in the passive security and \(m= \left( {\begin{array}{c}n\\ k-1\end{array}}\right) \) in the active security. The outputs of our bit-decomposition and modulus-conversion protocols are \(\ell \) tuple of shares in \(\mathbb {Z}_2\) and a share in \(\mathbb {Z}_{p'}\), respectively, where \(p'\) is the modulus after the conversion. If k and n are small, the communication complexity of our passively secure bit-decomposition and modulus-conversion protocols are \(O(\ell )\) bits and \(O(\lceil \log p' \rceil )\) bits, respectively. Our key observation is that a quotient of additive shares can be computed from the least significant \(\lceil \log m \rceil \) bits. If a secret a is “shifted” and additively shared as \(x_i\)s so that \(2^{\lceil \log m \rceil }a = {\sum _{i=0}^{m-1}}x_i = 2^{ \lceil \log m \rceil } a + qp\), the least significant \(\lceil \log m \rceil \) bits of \(\sum _{i=0}^{m-1} x_i\) determine q since p is an odd prime and the least significant \(\lceil \log m \rceil \) bits of \(2^{\lceil \log m \rceil } a\) are 0s.

Keywords

Bit decomposition Modulus conversion Secure computation Secret sharing Honest majority 

References

  1. 1.
    Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS, pp. 805–817. ACM (2016)Google Scholar
  2. 2.
    Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel Institute of Technology (1996)Google Scholar
  3. 3.
    Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: Privacy-preserving tax fraud detection in the cloud with realistic data volumes. Cybernetica research report (2016)Google Scholar
  4. 4.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)CrossRefGoogle Scholar
  5. 5.
    Bos, J.W., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Efficient SIMD arithmetic modulo a Mersenne number. In: Antelo, E., Hough, D., Ienne, P. (eds.) 20th IEEE Symposium on Computer Arithmetic, ARITH 2011, 25–27 July 2011, Tübingen, Germany, pp. 213–221. IEEE Computer Society (2011)Google Scholar
  6. 6.
    Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_19CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_15CrossRefGoogle Scholar
  8. 8.
    From, S.L., Jakobsen, T.: Secure multi-party computation on integers. Ph.D. thesis, University of Aarhus (2006)Google Scholar
  9. 9.
    Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_8CrossRefGoogle Scholar
  10. 10.
    Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: Shmoys, D.B. (ed.) STOC, pp. 495–504. ACM (2014)Google Scholar
  11. 11.
    Goldreich, O.: The Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ikarashi, D., Kikuchi, R., Hamada, K., Chida, K.: Actively private and correct MPC scheme in \(t<n/2\) from passively secure schemes with small overhead. IACR Cryptology ePrint Archive, vol. 2014, p. 304 (2014)Google Scholar
  13. 13.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. IEICE Trans. 72, 56–64 (1989)MathSciNetGoogle Scholar
  14. 14.
    Kimura, E., Hamada, K., Kikuchi, R., Chida, K., Okamoto, K., Manabe, S., Kuroda, T., Matsumura, Y., Takeda, T., Mihara, N.: Evaluation of secure computation in a distributed healthcare setting. In: Proceedings of MIE2016 at HEC2016, pp. 152–156 (2016)Google Scholar
  15. 15.
    Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 259–276. ACM (2017)Google Scholar
  16. 16.
    Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_23CrossRefGoogle Scholar
  17. 17.
    Reistad, T., Toft, T.: Linear, constant-rounds bit-decomposition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 245–257. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14423-3_17CrossRefGoogle Scholar
  18. 18.
    Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_31CrossRefGoogle Scholar
  19. 19.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00862-7_24CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ryo Kikuchi
    • 1
    Email author
  • Dai Ikarashi
    • 1
  • Takahiro Matsuda
    • 2
  • Koki Hamada
    • 1
  • Koji Chida
    • 1
  1. 1.NTT CorporationTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan

Personalised recommendations