Advertisement

Calibration and Other Uses of Auxiliary Data in Weighting

  • Richard Valliant
  • Jill A. Dever
  • Frauke Kreuter
Chapter
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)

Abstract

The last step in weighting, which is extremely important in many surveys, is to use auxiliary data to correct coverage problems and to reduce standard errors. By auxiliary data, we mean information that is available for the entire frame or target population, either for each individual population unit or in aggregate form. This chapter describes the general method of calibration estimation, including poststratification, raking, and general regression estimation. The software packages used for examples are the R survey package, SUDAAN, and in Stata. The steps for computing base weights, nonresponse adjustments, and calibration may result in weights whose sizes vary quite a bit. Quadratic programming and weight-trimming methods are also covered.

References

  1. Binder D., Roberts G. (2009). Design- and model-based inference for model paramenters. In: Pfeffermann D., Rao C. (eds) Handbook of Statistics, Volume 29B Sample Surveys: Inference and Analysis. Elsevier, Amsterdam, chap 24, pp 33–54.Google Scholar
  2. Chen S., Rust K. F. (2017). An extension of Kish’s formula for design effects to two- and three-stage designs with stratification. Journal of Survey Statistics and Methodology 5(2):111–130.CrossRefGoogle Scholar
  3. Cochran W. (1977). Sampling Techniques. John Wiley & Sons, Inc., New York.zbMATHGoogle Scholar
  4. Cook R. D., Weisberg S. (1982). Residuals and Influence in Regression. Chapman & Hall Ltd, London.zbMATHGoogle Scholar
  5. Dever J. A., Valliant R. (2010). A comparison of variance estimators for poststratification to estimated control totals. Survey Methodology 36:45–56.Google Scholar
  6. Deville J. C., Särndal C. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association 87(418):376–382.MathSciNetCrossRefGoogle Scholar
  7. Deville J. C., Särndal C., Sautory O. (1993). Generalized raking procedures in survey sampling. Journal of the American Statistical Association 88(423):1013–1020.CrossRefGoogle Scholar
  8. Folsom R. E., Singh A. C. (2000). The generalized exponential model for sampling weight calibration for extreme values, nonresponse, and poststratification. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 598–603.Google Scholar
  9. Gabler S., Haeder S., Lahiri P. (1999). A model based justification of Kish’s formula for design effects for weighting and clustering. Survey Methodology 25(1):105–106.Google Scholar
  10. Hansen M. H., Madow W. G., Tepping B. J. (1983). An evaluation of model-dependent and probability sampling inferences in sample surveys. Journal of the American Statistical Association 78:776–793.CrossRefGoogle Scholar
  11. Hartley H. O., Rao J. N. K. (1962). Sampling with unequal probabilities and with replacement. Annals of Mathematical Statistics 33(2):350–374.MathSciNetCrossRefGoogle Scholar
  12. Henry K. A. (2011). Weight adjustment methods and their impact on sample-based inference. PhD thesis, University of Maryland, College Park, MD, URL http://drum.lib.umd.edu/handle/1903/12278
  13. Henry K. A., Valliant R. (2015). A design effect measure for calibration weighting in single–stage samples. Survey Methodology 41:315–331.Google Scholar
  14. Isaki C. T., Tsay J. H., Fuller W. A. (2004). Weighting sample data subject to independent controls. Survey Methodology 30(1):35–44.Google Scholar
  15. Kim J. J., Li J., Valliant R. (2007). Cell collapsing in poststratification. Survey Methodology 33(2):139–150.Google Scholar
  16. Kish L. (1965). Survey Sampling. John Wiley & Sons, Inc., New York.zbMATHGoogle Scholar
  17. Kish L. (1987b). Weighting in Deft. The Survey Statistician.Google Scholar
  18. Kish L. (1992). Weighting for unequal pi. Journal of Official Statistics 8(2):183–200.MathSciNetGoogle Scholar
  19. Korn E. L., Graubard B. I. (1999). Analysis of Health Surveys. John Wiley & Sons, New York.CrossRefGoogle Scholar
  20. Kott P. S. (2009). Calibration weighting: Combining probability samples and linear prediction models. In: Handbook of Statistics, Volume 29B, Sample Surveys: Inference and Analysis. Elsevier, Amsterdam.Google Scholar
  21. Lehtonen R., Veijanen A. (1998). Logistic generalized regression estimators. Survey Methodology 24:51–55.Google Scholar
  22. Li J., Valliant R. (2009). Survey weighted hat matrix and leverages. Survey Methodology 35:15–24.Google Scholar
  23. Li J., Valliant R. (2011). Linear regression diagnostics for unclustered survey data. Journal of Official Statistics 27:99–119.Google Scholar
  24. Liao D., Valliant R. (2012a). Condition indexes and variance decompositions for diagnosing collinearity in linear model analysis of survey data. Survey Methodology 38:53–62.Google Scholar
  25. Liao D., Valliant R. (2012b). Variance inflation factors in the analysis of complex survey data. Survey Methodology 38:to be published.Google Scholar
  26. Liu J., Iannacchione V. G., Byron M. (2002). Decomposing design effects for stratified sampling. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 2124–2126.Google Scholar
  27. Lumley T. (2010). Complex Surveys. John Wiley & Sons, Inc., New York.CrossRefGoogle Scholar
  28. Lumley T. (2017). survey: analysis of complex survey samples R package v. 3.32. URL http://CRAN.R-project.org/package=survey
  29. National Center For Education Statistics. (2008). NAEP weighting procedures: 2003 weighting procedures and variance estimation. Tech. rep., National Center for Education Statistics, URL http://nces.ed.gov/nationsreportcard/tdw/weighting/2002_2003/weighting_2003_studtrim.asp
  30. Pfeffermann D. (1993). The role of sampling weights when modeling survey data. International Statistical Review 61:317–337.CrossRefGoogle Scholar
  31. Pfeffermann D., Sverchkov M. (2009). Inference under informative sampling. In: Pfeffermann D., Rao C. (eds) Handbook of Statistics, Volume 29B Sample Surveys: Inference and Analysis. Elsevier, Amsterdam, chap 39, pp 455–488.Google Scholar
  32. Potter F. J. (1990). A study of procedures to identify and trim extreme sampling weights. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 225–230.Google Scholar
  33. Potter F. J. (1993). The effect of weight trimming on nonlinear survey estimates. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 758–763.Google Scholar
  34. RTI International. (2012). SUDAAN Language Manual, Release 11.0. Research Triangle Park, NC.Google Scholar
  35. Rubin D. B. (1976). Inference and missing data. Biometrika 63:581–592.MathSciNetCrossRefGoogle Scholar
  36. Särndal C. (2007). The calibration approach in survey theory and practice. Survey Methodology 33(2):99–119.Google Scholar
  37. Särndal C., Swensson B., Wretman J. (1992). Model Assisted Survey Sampling. Springer, New York.CrossRefGoogle Scholar
  38. Spencer B. D. (2000). An approximate design effect for unequal weighting when measurements may correlate with selection probabilities. Survey Methodology 26(2):137–138.Google Scholar
  39. Stukel D. M., Särndal C., Hidiroglou M. A. (1996). Variance estimation for calibration estimators: A comparison of jackknifing versus Taylor linearization. Survey Methodology 22(2):117–125.Google Scholar
  40. Turlach B. A., Weingessel A. (2011). quadprog: Functions to solve Quadratic Programming Problems. URL http://CRAN.R-project.org/package=quadprog
  41. Valliant R. (1985). Nonlinear prediction theory and the estimation of proportions in a finite population. Journal of the American Statistical Association 80:631–641.MathSciNetCrossRefGoogle Scholar
  42. Valliant R., Dever J. A. (2018). Survey Weights: A Step-by-Step Guide to Calculation. Stata Press, College Station, TX.Google Scholar
  43. Weisberg S. (2005). Applied Linear Regression, 3rd edn. John Wiley & Sons, New York.CrossRefGoogle Scholar
  44. Zardetto D. (2015). ReGenesees: An advanced R system for calibration, estimation and sampling error assessment in complex sample surveys. Journal of Official Statistics 31:177–203.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Richard Valliant
    • 1
    • 2
  • Jill A. Dever
    • 3
  • Frauke Kreuter
    • 2
    • 4
  1. 1.University of MichiganAnn ArborUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.RTI InternationalWashington, DCUSA
  4. 4.University of MannheimMannheimGermany

Personalised recommendations