Advertisement

Folding and Catalysis Near Life’s Origin: Support for Fe2+ as a Dominant Divalent Cation

  • C. Denise Okafor
  • Jessica C. Bowman
  • Nicholas V. Hud
  • Jennifer B. Glass
  • Loren Dean Williams
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 35)

Abstract

There is broad consensus that during and immediately following the origin of life, RNA was the single biopolymer or was among a small group of cooperating biopolymers. During the origin of life, the Archean Earth was anoxic; Fe2+ was abundant and relatively benign. We hypothesize that RNA used Fe2+ as a cofactor instead of, or along with, Mg2+ during the inception and early phases of biology, until the Great Oxidation Event (GOE). In this model, RNA participated in a metal substitution during the GOE, whereby Mg2+ replaced Fe2+ as the dominant RNA cofactor. A GOE-induced Fe2+ to Mg2+ substitution predicts that under ‘early Earth’ (anoxic) conditions, Fe2+ can participate in a variety of functions, including mediation of RNA folding and catalysis by ribozymes and proteins. Understanding the influence of Fe2+ on nucleic acid structure and function could provide an important link between the geological record and the ancestral biological world. This review focuses on experimental work investigating the interactions and functions of RNA and nucleic acid processing proteins with Fe2+ under anoxic, early Earth conditions.

Notes

Acknowledgments

This work was supported in part by National Aeronautics and Space Administration grants NNX16AJ28G and NNX16AJ29G.

References

  1. Aguirre JD, Culotta VC (2012) Battles with iron: manganese in oxidative stress protection. J Biol Chem 287:13541–13548CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anbar AD (2008) Oceans. Elements and evolution. Science 322:1481–1483CrossRefPubMedGoogle Scholar
  3. Anjem A, Varghese S, Imlay JA (2009) Manganese import is a key element of the oxyr response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72:844–858CrossRefPubMedPubMedCentralGoogle Scholar
  4. Athavale SS, Petrov AS, Hsiao C, Watkins D, Prickett CD, Gossett JJ, Lie L, Bowman JC, O'Neill E, Bernier CR et al (2012) RNA folding and catalysis mediated by iron (II). PLoS One 7:e38024CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atkins JF, Gesteland RF, Cech TR (eds) (2011) RNA worlds: from life’s origins to diversity in gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  6. Barton L (2005) Structural and functional relationships in prokaryotes. Springer, BerlinGoogle Scholar
  7. Berens C, Streicher B, Schroeder R, Hillen W (1998) Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated fenton reactions. Chem Biol 5:163–175CrossRefPubMedGoogle Scholar
  8. Bock CW, Markham GD, Katz AK, Glusker JP (2006) The arrangement of first- and second-shell water molecules around metal ions: effects of charge and size. Theor Chem Accounts 115:100–112CrossRefGoogle Scholar
  9. Bowman JC, Lenz TK, Hud NV, Williams LD (2012) Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol 22:262–272CrossRefPubMedGoogle Scholar
  10. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137CrossRefPubMedGoogle Scholar
  11. Brown ID (1988) What factors determine cation coordination numbers. Acta Crystallogr Sect B 44:545–553CrossRefGoogle Scholar
  12. Brown ID (1992) Chemical and steric constraints in inorganic solids. Acta Crystallogr Sect B 48:553–572CrossRefGoogle Scholar
  13. Burkhoff AM, Tullius TD (1987) The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell 48:935–943CrossRefPubMedGoogle Scholar
  14. Butcher SE (2011) The spliceosome and its metal ions. Met Ions Life Sci 9:235–251CrossRefPubMedGoogle Scholar
  15. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1685CrossRefGoogle Scholar
  16. Cate JH, Hanna RL, Doudna JA (1997) A magnesium ion core at the heart of a ribozyme domain. Nat Struct Biol 4:553–558CrossRefPubMedGoogle Scholar
  17. Celander DW, Cech TR (1990) Iron (II)-ethylenediaminetetraacetic acid catalyzed cleavage of RNA and DNA oligonucleotides: similar reactivity toward single-and double-stranded forms. Biochemistry 29:1355–1361CrossRefPubMedGoogle Scholar
  18. Chu BC, Orgel LE (1985) Nonenzymatic sequence-specific cleavage of single-stranded DNA. Proc Natl Acad Sci USA 82:963–967CrossRefPubMedGoogle Scholar
  19. Cole PE, Yang SK, Crothers DM (1972) Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry 11:4358–4368CrossRefPubMedGoogle Scholar
  20. Cotruvo JA, Stubbe J (2011) Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem 80:733–767CrossRefPubMedPubMedCentralGoogle Scholar
  21. Deamer D, Weber AL (2010) Bioenergetics and life’s origins. Cold Spring Harb Perspect Biol 2:a004929CrossRefPubMedPubMedCentralGoogle Scholar
  22. Derry LA (2015) Causes and consequences of mid-proterozoic anoxia. Geophys Res Lett 42:8538–8546CrossRefGoogle Scholar
  23. Dervan P (1986) Design of sequence-specific DNA binding molecules. Science 232:464–471CrossRefPubMedGoogle Scholar
  24. Doherty AJ, Dafforn TR (2000) Nick recognition by DNA ligases. J Mol Biol 296:43–56CrossRefPubMedGoogle Scholar
  25. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391:251–258CrossRefPubMedGoogle Scholar
  26. Draper DE (2004) A guide to ions and RNA structure. RNA 10:335–343CrossRefPubMedPubMedCentralGoogle Scholar
  27. Drever JI (1974) Geochemical model for the origin of precambrian banded iron formations. GSA Bull 85:1099–1106CrossRefGoogle Scholar
  28. Dupont CL, Yang S, Palenik B, Bourne PE (2006) Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA 103:17822–17827CrossRefPubMedGoogle Scholar
  29. Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anolles G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci USA 107:10567–10572CrossRefPubMedGoogle Scholar
  30. Ellenberger T, Tomkinson AE (2008) Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem 77:313CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hanna R, Doudna JA (2000) Metal ions in ribozyme folding and catalysis. Curr Opin Chem Biol 4:166–170CrossRefPubMedGoogle Scholar
  32. Harel A, Bromberg Y, Falkowski PG, Bhattacharya D (2014) Evolutionary history of redox metal-binding domains across the tree of life. Proc Natl Acad Sci USA 111:7042–7047CrossRefPubMedGoogle Scholar
  33. Hazen RM, Ferry JM (2010) Mineral evolution: mineralogy in the fourth dimension. Elements 6:9–12CrossRefGoogle Scholar
  34. Holland HD (1973) The oceans; a possible source of iron in iron-formations. Econ Geol 68:1169–1172CrossRefGoogle Scholar
  35. Holland H (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, NJGoogle Scholar
  36. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B Biol Sci 361:903–915CrossRefGoogle Scholar
  37. Holland DM, Jacobs SS, Jenkins A (2003) Modelling the ocean circulation beneath the ross ice shelf. Antarct Sci 15:13–23CrossRefGoogle Scholar
  38. Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H et al (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986CrossRefPubMedGoogle Scholar
  39. Hsiao C, Tannenbaum M, VanDeusen H, Hershkovitz E, Perng G, Tannenbaum A, Williams LD (2008) In: Hud N (ed) Nucleic acid metal ion interactions. The Royal Society of Chemistry, London, pp 1–35Google Scholar
  40. Hsiao C, Chou I-C, Okafor CD, Bowman JC, O’Neill EB, Athavale SS, Petrov AS, Hud NV, Wartell RM, Harvey SC et al (2013) Iron(II) plus RNA can catalyze electron transfer. Nat Chem 5:525–528CrossRefPubMedGoogle Scholar
  41. Iyengar V, Woittiez J (1988) Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem 34:474–481PubMedGoogle Scholar
  42. Izawa MRM, Nesbitt HW, MacRae ND, Hoffman EL (2010) Composition and evolution of the early oceans: evidence from the tagish lake meteorite. Earth Planet Sci Lett 298:443–449CrossRefGoogle Scholar
  43. Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth. Annu Rev Earth Planet Sci 36:457–493CrossRefGoogle Scholar
  44. Johnson-Buck AE, McDowell SE, Walter NG (2011) Metal ions: supporting actors in the playbook of small ribozymes. Met Ions Life Sci 9:175–196CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE (2015) Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43:135–138CrossRefGoogle Scholar
  46. Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3',5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675PubMedGoogle Scholar
  47. Kean JM, White SA, Draper DE (1985) Detection of high-affinity intercalator sites in a ribosomal RNA fragment by the affinity cleavage intercalator methidiumpropyl-EDTA-Iron(II). Biochemistry 24:5062–5070CrossRefPubMedGoogle Scholar
  48. Khan MA, Walden WE, Goss DJ, Theil EC (2009) Direct Fe2+ sensing by iron-responsive messenger RNA: repressor complexes weakens binding. J Biol Chem 284:30122–30128CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kozlowski H, Kolkowska P, Watly J, Krzywoszynska K, Potocki S (2014) General aspects of metal toxicity. Curr Med Chem 21:3721–3740CrossRefPubMedGoogle Scholar
  50. Lanier KA, Petrov AS, Williams LD (2017) The central symbiosis of molecular biology. J Mol Evol 85:8–13CrossRefPubMedPubMedCentralGoogle Scholar
  51. Latham JA, Cech TR (1989) Defining the inside and outside of a catalytic RNA molecule. Science 245:276–282CrossRefPubMedGoogle Scholar
  52. Leclerc F (2010) Hammerhead ribozymes: true metal or nucleobase catalysis? Where is the catalytic power from? Molecules 15:5389CrossRefPubMedGoogle Scholar
  53. Lee JY, Chang C, Song HK, Moon J, Yang JK, Kim H-K, Kwon S-T, Suh SW (2000) Crystal structure of Nad(+)-dependent DNA ligase: modular architecture and functional implications. EMBO J 19:1119–1129CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lilley DMJ (2011) Mechanisms of RNA catalysis. Philos Trans R Soc B Biol Sci 366:2910–2917CrossRefGoogle Scholar
  55. Lykke-Andersen J, Christiansen J (1998) The C-terminal carboxy group of T7 RNA polymerase ensures efficient magnesium ion-dependent catalysis. Nucleic Acids Res 26:5630–5635CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in earth’s early ocean and atmosphere. Nature 506:307–315CrossRefPubMedGoogle Scholar
  57. Ma J, Haldar S, Khan MA, Sharma SD, Merrick WC, Theil EC, Goss DJ (2012) Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. Proc Natl Acad Sci USA 109:8417–8422CrossRefPubMedGoogle Scholar
  58. Maguire ME, Cowan JA (2002) Magnesium chemistry and biochemistry [review]. BioMetals 15:203–210CrossRefPubMedGoogle Scholar
  59. Martin JE, Imlay JA (2011) The alternative aerobic ribonucleotide reductase of Escherichia coli, Nrdef, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Mol Microbiol 80:319–334CrossRefPubMedPubMedCentralGoogle Scholar
  60. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (shape). J Am Chem Soc 127:4223–4231CrossRefPubMedGoogle Scholar
  61. Misra VK, Draper DE (1998) On the role of magnesium ions in RNA stability. Biopolymers 48:113–135CrossRefPubMedGoogle Scholar
  62. Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:645–650CrossRefPubMedGoogle Scholar
  63. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964CrossRefPubMedGoogle Scholar
  64. Okafor CD, Lanier KA, Petrov AS, Athavale SS, Bowman JC, Hud NV, Williams LD (2017) Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) as a cofactor before the great oxidation event. Nucleic Acids Res 45:3634–3642CrossRefPubMedPubMedCentralGoogle Scholar
  65. Penedo JC, Wilson TJ, Jayasena SD, Khvorova A, Lilley DM (2004) Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10:880–888CrossRefPubMedPubMedCentralGoogle Scholar
  66. Petrov AS, Bowman JC, Harvey SC, Williams LD (2011) Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding. RNA 17:291–297CrossRefPubMedPubMedCentralGoogle Scholar
  67. Petrov A, Bernier C, Hsiao C, Okafor CD, Tannenbaum E, Stern J, Gaucher E, Schneider D, Hud NV, Harvey SC et al (2012) RNA-magnesium-protein interactions in large ribosomal subunit. J Phys Chem B 116:8113–8120CrossRefPubMedGoogle Scholar
  68. Piccinelli P, Samuelsson T (2007) Evolution of the iron-responsive element. RNA 13:952–966CrossRefPubMedPubMedCentralGoogle Scholar
  69. Popovic M, Fliss PS, Ditzler MA (2015) In vitro evolution of distinct self-cleaving ribozymes in diverse environments. Nucleic Acids Res 43:3789–3801CrossRefGoogle Scholar
  70. Powers T, Noller H (1995) Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1:194PubMedPubMedCentralGoogle Scholar
  71. Price MA, Tullius TD (1993) How the structure of an adenine tract depends on sequence context: a new model for the structure of Tnan DNA sequences. Biochemistry 32:127–136CrossRefPubMedGoogle Scholar
  72. Prousek J (2007) Fenton chemistry in biology and medicine. Pure Appl Chem 79:2325–2338CrossRefGoogle Scholar
  73. Pyle AM (1993) Ribozymes: a distinct class of metalloenzymes. Science 261:709–714CrossRefPubMedGoogle Scholar
  74. Rashin AA, Honig B (1985) Reevaluation of the born model of ion hydration. J Phys Chem 89:5588–5593CrossRefGoogle Scholar
  75. Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ, Lyons TW, Fischer WW, Wang C, Cole DB, Konhauser KO (2017) Evolution of the global phosphorus cycle. Nature 541:386–389CrossRefPubMedGoogle Scholar
  76. Rittié L, Perbal B (2008) Enzymes used in molecular biology: a useful guide. J Cell Commun Signal 2:25–45CrossRefPubMedPubMedCentralGoogle Scholar
  77. Robertson MP, Scott WG (2007) The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–1553CrossRefPubMedGoogle Scholar
  78. Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286CrossRefPubMedGoogle Scholar
  79. Shcherbakova I, Mitra S (2009) Hydroxyl-radical footprinting to probe equilibrium changes in RNA tertiary structure. Methods Enzymol 468:31–46CrossRefPubMedGoogle Scholar
  80. Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T et al (2010) Increased iron and free radical generation in preclinical alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19:363–372CrossRefPubMedPubMedCentralGoogle Scholar
  81. Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398CrossRefPubMedGoogle Scholar
  82. Theil EC, Goss DJ (2009) Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 109:4568–4579CrossRefPubMedPubMedCentralGoogle Scholar
  83. Torrents E, Aloy P, Gibert I, Rodriguez-Trelles F (2002) Ribonucleotide reductases: divergent evolution of an ancient enzyme. J Mol Evol 55:138–152CrossRefPubMedGoogle Scholar
  84. Tullius TD, Dombroski BA (1985) Iron (II) EDTA used to measure the helical twist along any DNA molecule. Science 230:679–681CrossRefPubMedGoogle Scholar
  85. Tullius TD, Greenbaum JA (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr Opin Chem Biol 9:127–134CrossRefPubMedGoogle Scholar
  86. Ushizaka S, Kuma K, Suzuki K (2011) Effects of Mn and Fe on growth of a coastal marine diatom Talassiosira weissflogii in the presence of precipitated Fe(III) hydroxide and EDTA-Fe(III) complex. Fish Sci 77:411–424CrossRefGoogle Scholar
  87. Uudsemaa M, Tamm T (2004) Calculation of hydration enthalpies of aqueous transition metal cations using two coordination shells and central ion substitution. Chem Phys Lett 400:54–58CrossRefGoogle Scholar
  88. Vary CP, Vournakis JN (1984) RNA structure analysis using methidiumpropyl-EDTA.Fe(II): a base-pair-specific RNA structure probe. Proc Natl Acad Sci USA 81:6978–6982CrossRefPubMedGoogle Scholar
  89. Vicens Q, Gooding AR, Laederach A, Cech TR (2007) Local RNA structural changes induced by crystallization are revealed by shape. RNA 13:536–548CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wilkinson KA, Merino EJ, Weeks KM (2005) RNA shape chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNA(Asp) transcripts. J Am Chem Soc 127:4659–4667CrossRefPubMedGoogle Scholar
  91. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput shape analysis reveals structures in Hiv-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6:883–899CrossRefGoogle Scholar
  92. Wolfe-Simon F, Starovoytov V, Reinfelder JR, Schofield O, Falkowski PG (2006) Localization and role of manganese superoxide dismutase in a marine diatom. Plant Physiol 142:1701–1709CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wulfsberg G (1991) Principles of descriptive inorganic chemistry. University Science Books, Sausalito, CAGoogle Scholar
  94. Yang W, Lee JY, Nowotny M (2006) Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol Cell 22:5–13CrossRefPubMedGoogle Scholar
  95. Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404CrossRefPubMedGoogle Scholar
  96. Zheng H, Shabalin IG, Handing KB, Bujnicki JM, Minor W (2015) Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection. Nucleic Acid Res 43:3789–3801CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • C. Denise Okafor
    • 1
  • Jessica C. Bowman
    • 1
  • Nicholas V. Hud
    • 1
  • Jennifer B. Glass
    • 2
  • Loren Dean Williams
    • 1
  1. 1.School of Chemistry and Biochemistry, NSF-NASA Center for Chemical Evolution, Georgia Institute of TechnologyAtlantaUSA
  2. 2.School of Earth and Atmospheric Sciences, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations