Advertisement

Template-Directed Replication of Nucleic Acids Mediated by Viscous Environments

  • Isaac Gállego
  • Christine He
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 35)

Abstract

Many hypotheses concerning the nature of early life assume that genetic information was once transferred through the template-directed synthesis of RNA, prior to the evolution of genetically encoded protein synthesis. However, attempts at identifying the earliest mechanism for the protein-free, template-directed replication of nucleic acids remain an elusive goal. A fundamental biophysical problem known as strand inhibition limits copying of a nucleic acid duplex: transferring information from a template sequence in the presence of its complementary strand is inhibited by the stability of the template duplex. This chapter discusses state-of-the-art strategies and a novel method which uses viscous solvents to overcome strand inhibition during template copying, one of the most challenging problems in polymer self-replication.

References

  1. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun (Camb) 1:70–71.  https://doi.org/10.1039/b210714gCrossRefGoogle Scholar
  2. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13(1):82–90.  https://doi.org/10.1039/C0GC00395FCrossRefGoogle Scholar
  3. Abe H, Kool ET (2004) Destabilizing universal linkers for signal amplification in self-ligating probes for RNA. J Am Chem Soc 126(43):13980–13986.  https://doi.org/10.1021/ja046791cCrossRefPubMedGoogle Scholar
  4. Adamala K, Engelhart AE, Szostak JW (2015) Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension. J Am Chem Soc 137(1):483–489.  https://doi.org/10.1021/ja511564dCrossRefPubMedGoogle Scholar
  5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Graland Science, New York, NYGoogle Scholar
  6. Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P (2010) Ice as a protocellular medium for RNA replication. Nat Commun 1:76.  https://doi.org/10.1038/ncomms1076CrossRefPubMedGoogle Scholar
  7. Attwater J, Tagami S, Kimoto M, Butler K, Kool ET, Wengel J, Herdewijn P, Hirao I, Holliger P (2013a) Chemical fidelity of an RNA polymerase ribozyme. Chem Sci 4(7):2804.  https://doi.org/10.1039/c3sc50574jCrossRefGoogle Scholar
  8. Attwater J, Wochner A, Holliger P (2013b) In-ice evolution of RNA polymerase ribozyme activity. Nat Chem 5(12):1011–1018.  https://doi.org/10.1038/nchem.1781CrossRefPubMedPubMedCentralGoogle Scholar
  9. Attwater J, Raguram A, Morgunov AS, Gianni E, Holliger P (2018) Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 7:e35255CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374.  https://doi.org/10.1146/annurev.biochem.71.110601.135425CrossRefPubMedGoogle Scholar
  11. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43(6):867–879.  https://doi.org/10.1016/j.molcel.2011.08.024CrossRefPubMedPubMedCentralGoogle Scholar
  12. Breaker RR, Joyce GF (2014) The expanding view of RNA and DNA function. Chem Biol 21(9):1059–1065.  https://doi.org/10.1016/j.chembiol.2014.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  13. Burcar B, Pasek M, Gull M, Cafferty BJ, Velasco F, Hud NV, Menor-Salván C (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55(42):13249–13253.  https://doi.org/10.1002/anie.201607773CrossRefGoogle Scholar
  14. Cafferty BJ, Hud NV (2014) Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology. Curr Opin Chem Biol 22:146–157.  https://doi.org/10.1016/j.cbpa.2014.09.015CrossRefPubMedGoogle Scholar
  15. Cafferty BJ, Gállego I, Chen MC, Farley KI, Eritja R, Hud NV (2013) Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. J Am Chem Soc 135(7):2447–2450.  https://doi.org/10.1021/ja312155vCrossRefPubMedGoogle Scholar
  16. Cafferty BJ, Fialho DM, Khanam J, Krishnamurthy R, Hud NV (2016) Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 7:11328CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cech TR (2000) The ribosome is a ribozyme. Science 289(5481):878–879.  https://doi.org/10.1126/science.289.5481.878CrossRefPubMedGoogle Scholar
  18. Chen MC, Cafferty BJ, Mamajanov I, Gállego I, Khanam J, Krishnamurthy R, Hud NV (2014) Spontaneous prebiotic formation of a beta-ribofuranoside that self-assembles with a complementary heterocycle. J Am Chem Soc 136(15):5640–5646.  https://doi.org/10.1021/ja410124vCrossRefPubMedGoogle Scholar
  19. Deck C, Jauker M, Richert C (2011) Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat Chem 3(8):603–608CrossRefPubMedGoogle Scholar
  20. Dose C, Ficht S, Seitz O (2006) Reducing product inhibition in DNA-template-controlled ligation reactions. Angew Chem Int Ed 45:5369–5373CrossRefGoogle Scholar
  21. Doty P, Marmur J, Eigner J, Schildkraut C (1960) Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc Natl Acad Sci USA 46(4):461–476CrossRefPubMedGoogle Scholar
  22. Ekland EH, Bartel DP (1995) The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res 23(16):3231–3238.  https://doi.org/10.1093/nar/23.16.3231CrossRefPubMedPubMedCentralGoogle Scholar
  23. Engelhart AE, Adamala KP, Szostak JW (2016) A simple physical mechanism enables homeostasis in primitive cells. Nat Chem 8(5):448–453.  https://doi.org/10.1038/nchem.2475CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fernando C, Gv K, Szathmary E (2007) A stochastic model of nonenzymatic nucleic acid replication: “elongators” sequester replicators. J Mol Evol 64:572–585CrossRefPubMedGoogle Scholar
  25. Forsythe JG, Yu S-S, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, Hud NV (2015) Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angew Chem Int Ed 54(34):9871–9875.  https://doi.org/10.1002/anie.201503792CrossRefGoogle Scholar
  26. Gállego I, Grover MA, Hud NV (2015) Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. Angew Chem Int Ed 54(23):6765–6769.  https://doi.org/10.1002/anie.201412354CrossRefGoogle Scholar
  27. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gilbert W (1986) Origin of life – the RNA world. Nature 319(6055):618–618.  https://doi.org/10.1038/319618a0CrossRefGoogle Scholar
  29. Green C, Tibbetts C (1981) Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Res 9(8):1905–1918.  https://doi.org/10.1093/nar/9.8.1905CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grossmann TN, Strohbach A, Seitz O (2008) Achieving turnover in DNA-templated reactions. ChemBioChem 9(14):2185–2192.  https://doi.org/10.1002/cbic.200800290CrossRefPubMedGoogle Scholar
  31. Gull M, Zhou MS, Fernandez FM, Pasek MA (2014) Prebiotic phosphate ester syntheses in a deep eutectic solvent. J Mol Evol 78(2):109–117.  https://doi.org/10.1007/s00239-013-9605-9CrossRefPubMedGoogle Scholar
  32. Hagen SJ (2010) Solvent viscosity and friction in protein folding dynamics. Curr Protein Pept Sci 11(5):385–395CrossRefPubMedGoogle Scholar
  33. He C, Gállego I, Laughlin B, Grover MA, Hud NV (2017) A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle. Nat Chem 9(4):318–324.  https://doi.org/10.1038/nchem.2628CrossRefPubMedGoogle Scholar
  34. Horning DP, Joyce GF (2016) Amplification of RNA by an RNA polymerase ribozyme. Proc Natl Acad Sci USA 113(35):9786–9791.  https://doi.org/10.1073/pnas.1610103113CrossRefPubMedGoogle Scholar
  35. Hud Nicholas V, Cafferty Brian J, Krishnamurthy R, Williams Loren D (2013) The origin of RNA and “my grandfather’s axe”. Chem Biol 20(4):466–474.  https://doi.org/10.1016/j.chembiol.2013.03.012CrossRefPubMedGoogle Scholar
  36. Ichihashi N, Usui K, Kazuta Y, Sunami T, Matsuura T, Yomo T (2013) Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat Commun 4:2494.  https://doi.org/10.1038/ncomms3494CrossRefPubMedGoogle Scholar
  37. Inoue T, Orgel LE (1981) Substituent control of the poly(C)-directed oligomerization of guanosine 5'-phosphoroimidazolide. J Am Chem Soc 103(25):7666–7667.  https://doi.org/10.1021/ja00415a051CrossRefGoogle Scholar
  38. Ivica NA, Obermayer B, Campbell GW, Rajamani S, Gerland U, Chen IA (2013) The paradox of dual roles in the RNA world: resolving the conflict between stable folding and templating ability. J Mol Evol 77(3):55–63.  https://doi.org/10.1007/s00239-013-9584-xCrossRefPubMedGoogle Scholar
  39. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292(5520):1319–1325.  https://doi.org/10.1126/science.1060786CrossRefPubMedGoogle Scholar
  40. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418(6894):214–221CrossRefGoogle Scholar
  41. Kaiser RI, Maity S, Jones BM (2014) Synthesis of prebiotic glycerol in interstellar ices. Angew Chem 127(1):197–202.  https://doi.org/10.1002/ange.201408729CrossRefGoogle Scholar
  42. Kausar A, McKay RD, Lam J, Bhogal RS, Tang AY, Gibbs-Davis JM (2011) Tuning DNA stability to achieve turnover in template for an enzymatic ligation reaction. Angew Chem Int Ed 50:8922–8926CrossRefGoogle Scholar
  43. Kervio E, Sosson M, Richert C (2016) The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkw476
  44. Kreysing M, Keil L, Lanzmich S, Braun D (2015) Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat Chem 7(3):203–208.  https://doi.org/10.1038/nchem.2155CrossRefPubMedGoogle Scholar
  45. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31(1):147–157.  https://doi.org/10.1016/0092-8674(82)90414-7CrossRefPubMedGoogle Scholar
  46. Kunkel TA, Bebenek R (2000) DNA replication fidelity. Annu Rev Biochem 69:497–529.  https://doi.org/10.1146/annurev.biochem.69.1.497CrossRefPubMedGoogle Scholar
  47. Lannan FM, Mamajanov I, Hud NV (2012) Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory. J Am Chem Soc 134(37):15324–15330.  https://doi.org/10.1021/ja303499mCrossRefPubMedGoogle Scholar
  48. Li Y, Breaker RR (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2'-hydroxyl group. J Am Chem Soc 121(23):5364–5372.  https://doi.org/10.1021/ja990592pCrossRefGoogle Scholar
  49. Luther A, Brandsch R, Gv K (1998) Surface-promoted replication and exponential amplification of DNA analogues. Nature 396:245–248CrossRefPubMedGoogle Scholar
  50. Mamajanov I, Engelhart AE, Bean HD, Hud NV (2010) DNA and RNA in anhydrous media: duplex, triplex, and g-quadruplex secondary structures in a deep eutectic solvent. Angew Chem Int Ed 49(36):6310–6314.  https://doi.org/10.1002/anie.201001561CrossRefGoogle Scholar
  51. Mamajanov I, MacDonald PJ, Ying JY, Duncanson DM, Dowdy GR, Walker CA, Engelhart AE, Fernandez FM, Grover MA, Hud NV, Schork FJ (2014) Ester formation and hydrolysis during wet-dry cycles: generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 47(4):1334–1343.  https://doi.org/10.1021/ma402256dCrossRefGoogle Scholar
  52. Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. Proc Natl Acad Sci USA 105(36):13351–13355.  https://doi.org/10.1073/pnas.0805086105CrossRefPubMedGoogle Scholar
  53. Mansy SS, Szostak JW (2009) Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol 74:47–54.  https://doi.org/10.1101/sqb.2009.74.014CrossRefPubMedGoogle Scholar
  54. Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454(7200):122–125.  https://doi.org/10.1038/nature07018CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mast CB, Schink S, Gerland U, Braun D (2013) Escalation of polymerization in a thermal gradient. Proc Natl Acad Sci USA 110(20):8030–8035.  https://doi.org/10.1073/pnas.1303222110CrossRefPubMedGoogle Scholar
  56. Matsumura S, Kun A, Ryckelynck M, Coldren F, Szilagyi A, Jossinet F, Rick C, Nghe P, Szathmary E, Griffiths AD (2016) Transient compartmentalization of RNA replicators prevents extinction due to parasites. Science 354(6317):1293–1296.  https://doi.org/10.1126/science.aag1582CrossRefPubMedGoogle Scholar
  57. Mills DR, Peterson RL, Spiegelman S (1967) An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci 58(1):217–224.  https://doi.org/10.1073/pnas.58.1.217CrossRefPubMedGoogle Scholar
  58. Mutschler H, Wochner A, Holliger P (2015) Freeze–thaw cycles as drivers of complex ribozyme assembly. Nat Chem 7(6):502–508.  https://doi.org/10.1038/nchem.2251CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mutschler H, Taylor AI, Lightowlers A, Houlihan G, Abramov M, Herdewijn P, Holliger P (2018) Innate potential of random genetic oligomer pools for recombination. bioRxiv 320499.  https://doi.org/10.1101/320499
  60. Panyutin IG, Hsieh P (1994) The kinetics of spontaneous DNA branch migration. Proc Natl Acad Sci USA 91(6):2021–2025CrossRefPubMedGoogle Scholar
  61. Patel BH, Percivalle C, Ritson DJ, DuffyColm D, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7(4):301–307.  https://doi.org/10.1038/nchem.2202CrossRefPubMedPubMedCentralGoogle Scholar
  62. Portella G, Germann MW, Hud NV, Orozco M (2014) MD and NMR analyses of choline and TMA binding to duplex DNA: on the origins of aberrant sequence-dependent stability by alkyl cations in aqueous and water-free solvents. J Am Chem Soc 136(8):3075–3086.  https://doi.org/10.1021/ja410698uCrossRefPubMedGoogle Scholar
  63. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242CrossRefPubMedGoogle Scholar
  64. Prywes N, Blain JC, Del Frate F, Szostak JW (2016) Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides. eLife 5:e17756.  https://doi.org/10.7554/eLife.17756CrossRefPubMedPubMedCentralGoogle Scholar
  65. Radding CM, Beattie KL, Holloman WK, Wiegand RC (1977) Uptake of homologous single-stranded fragments by superhelical DNA: IV. Branch migration. J Mol Biol 116(4):825–839.  https://doi.org/10.1016/0022-2836(77)90273-XCrossRefPubMedGoogle Scholar
  66. Roberts R, Crothers D (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258(5087):1463–1466.  https://doi.org/10.1126/science.1279808CrossRefPubMedGoogle Scholar
  67. Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP (2009) Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326(5957):1271–1275.  https://doi.org/10.1126/science.1174676CrossRefPubMedPubMedCentralGoogle Scholar
  68. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082.  https://doi.org/10.1021/cr300162pCrossRefPubMedGoogle Scholar
  69. Stoeger T, Battich N, Pelkmans L (2016) Passive noise filtering by cellular compartmentalization. Cell 164(6):1151–1161.  https://doi.org/10.1016/j.cell.2016.02.005CrossRefPubMedGoogle Scholar
  70. Storz G (2002) An expanding universe of noncoding RNAs. Science 296(5571):1260–1263.  https://doi.org/10.1126/science.1072249CrossRefPubMedGoogle Scholar
  71. Szostak JW (2012) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3:2.  https://doi.org/10.1186/1759-2208-3-2CrossRefGoogle Scholar
  72. Tateishi-Karimata H, Sugimoto N (2012) A-T base pairs are more stable than G-C base pairs in a hydrated ionic liquid. Angew Chem Int Ed Eng 51(6):1416–1419.  https://doi.org/10.1002/anie.201106423CrossRefGoogle Scholar
  73. Viasnoff V, Meller A, Isambert H (2006) DNA nanomechanical switches under folding kinetics control. Nano Lett 6(1):101–104.  https://doi.org/10.1021/nl052161cCrossRefPubMedGoogle Scholar
  74. Wachowius F, Attwater J, Holliger P (2017) Nucleic acids: function and potential for abiogenesis. Q Rev Biophys 50.  https://doi.org/10.1017/s0033583517000038
  75. Walker SI, Grover MA, Hud NV (2012) Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution. PLoS One 7(4):e34166.  https://doi.org/10.1371/journal.pone.0034166CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang S, Kool ET (1995) Origins of the large differences in stability of DNA and RNA helixes: C-5 methyl and 2'-hydroxyl effects. Biochemistry 34(12):4125–4132. https://doi.org/10.1021/bi00012a031Google Scholar
  77. Watson JD, Crick FC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acids. Nature 171:737–738CrossRefPubMedGoogle Scholar
  78. Wochner A, Attwater J, Coulson A, Holliger P (2011) Ribozyme-catalyzed transcription of an active ribozyme. Science 332(6026):209–229.  https://doi.org/10.1126/science.1200752
  79. Woese CR (2001) Translation: in retrospect and prospect. RNA 7:1055–1067.  https://doi.org/10.1017/S1355838201010615CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhan Z-YJ, Lynn DG (1997) Chemical amplification through template-directed synthesis. J Am Chem Soc 119:12420–12421CrossRefGoogle Scholar
  81. Zhang X, Qu Y, Chen H, Rouzina I, Zhang S, Doyle PS, Yan J (2014) Interconversion between three overstretched DNA structures. J Am Chem Soc 136(45):16073–16080.  https://doi.org/10.1021/ja5090805CrossRefPubMedGoogle Scholar
  82. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397.  https://doi.org/10.1146/annurev.biophys.37.032807.125817CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Isaac Gállego
    • 1
  • Christine He
    • 2
  1. 1.MRC-Laboratory of Molecular BiologyCambridgeUK
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations