Advertisement

Global, Regional, and Ethnic Differences in Diabetic Nephropathy

  • Oluwatoyin I. Ameh
  • Ikechi G. Okpechi
  • Charles AgyemangEmail author
  • Andre P. Kengne
Chapter

Abstract

Diabetes mellitus (DM) is a common chronic medical disorder worldwide. Together with its attendant chronic target organ complications, DM currently imposes enormous demands on health-care spending and poses a threat to global health. With an estimated global prevalence of microalbuminuria of 40%, diabetic nephropathy (DN) is rapidly becoming a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). The clinical phenotypes and natural history of DN are however differentially represented across various regions of the world as well as among various ethnicities. Among high-income countries previously known to have high incidence rates of DN-related ESRD, a declining trend is presently being observed, while rates in low-to-middle-income countries are alarmingly on the increase. South Asians, American Hispanics, and African-Americans more commonly develop the macroalbuminuric DN phenotype; African-Americans and South Asians are also more likely to progress rapidly to more advanced stages of CKD. Factors such as genetic predisposition, differing access to standard DM care, as well as suboptimal DM-related health-care spending are identified drivers for observed differences. CKD screening strategies utilizing affordable and cost-effective technologies among a high-risk population such as diabetics will significantly stem the current tide.

Keywords

Diabetes Nephropathy Global Regional Ethnic Genetics 

References

  1. 1.
    Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.  https://doi.org/10.1016/j.diabres.2017.03.024.CrossRefPubMedGoogle Scholar
  2. 2.
    Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep. 2006;6(6):479–83.CrossRefGoogle Scholar
  3. 3.
    Pelletier EM, Smith PJ, Boye KS, Misurski DA, Tunis SL, Minshall ME. Direct medical costs for type 2 diabetes mellitus complications in the US commercial payer setting: a resource for economic research. Appl Health Econ Health Policy. 2008;6(2–3):103–12.  https://doi.org/10.2165/00148365-200806020-00003.CrossRefPubMedGoogle Scholar
  4. 4.
    Nichols GA, Vupputuri S, Lau H. Medical care costs associated with progression of diabetic nephropathy. Diabetes Care. 2011;34(11):2374–8.  https://doi.org/10.2337/dc11-0475.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001;44(Suppl 2):S14–21.CrossRefGoogle Scholar
  6. 6.
    Bilous R. Microvascular disease: what does the UKPDS tell us about diabetic nephropathy? Diabet Med. 2008;25(Suppl 2):25–9.  https://doi.org/10.1111/j.1464-5491.2008.02496.x.CrossRefPubMedGoogle Scholar
  7. 7.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.CrossRefGoogle Scholar
  8. 8.
    Meeks KA, Freitas-Da-Silva D, Adeyemo A, Beune EJ, Modesti PA, Stronks K, Zafarmand MH, Agyemang C. Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: a systematic review and meta-analysis. Intern Emerg Med. 2016;11(3):327–40.  https://doi.org/10.1007/s11739-015-1302-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol. 2016;5(1):49–56.PubMedGoogle Scholar
  10. 10.
    Crook ED. Diabetic nephropathy in African Americans. Am J Hypertens. 2001;14(6 Pt 2):132S–8S.CrossRefGoogle Scholar
  11. 11.
    Krop JS, Coresh J, Chambless LE, Shahar E, Watson RL, Szklo M, Brancati FL. A community-based study of explanatory factors for the excess risk for early renal function decline in blacks vs whites with diabetes: the Atherosclerosis Risk in Communities study. Arch Intern Med. 1999;159(15):1777–83.CrossRefGoogle Scholar
  12. 12.
    Zimmet PZ. Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia. 1999;42(5):499–518.  https://doi.org/10.1007/s001250051188.CrossRefPubMedGoogle Scholar
  13. 13.
    Tang SC. Diabetic nephropathy: a global and growing threat. Hong Kong Med J. 2010;16(4):244–5.PubMedGoogle Scholar
  14. 14.
    Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG, investigators D. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int. 2006;69(11):2057–63.  https://doi.org/10.1038/sj.ki.5000377.CrossRefGoogle Scholar
  15. 15.
    United States Renal Data System. USRDS annual data report: epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2016.Google Scholar
  16. 16.
    Rabkin R. Diabetic nephropathy. Clin Cornerstone. 2003;5(2):1–11.CrossRefGoogle Scholar
  17. 17.
    Randhawa G. Renal health disparities in the United Kingdom: a focus on ethnicity. Semin Nephrol. 2010;30(1):8–11.  https://doi.org/10.1016/j.semnephrol.2009.10.006.CrossRefPubMedGoogle Scholar
  18. 18.
    Noubiap JJ, Naidoo J, Kengne AP. Diabetic nephropathy in Africa: a systematic review. World J Diabetes. 2015;6(5):759–73.  https://doi.org/10.4239/wjd.v6.i5.759.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fischer MJ, Go AS, Lora CM, Ackerson L, Cohan J, Kusek JW, Mercado A, Ojo A, Ricardo AC, Rosen LK, Tao K, Xie D, Feldman HI, Lash JP, Cric, Groups HCS. CKD in Hispanics: baseline characteristics from the CRIC (chronic renal insufficiency cohort) and Hispanic-CRIC studies. Am J Kidney Dis. 2011;58(2):214–27.  https://doi.org/10.1053/j.ajkd.2011.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003;290(14):1884–90.  https://doi.org/10.1001/jama.290.14.1884.CrossRefPubMedGoogle Scholar
  21. 21.
    Gupta R, Misra A. Epidemiology of microvascular complications of diabetes in south Asians and comparison with other ethnicities. J Diabetes. 2016;8(4):470–82.  https://doi.org/10.1111/1753-0407.12378.CrossRefPubMedGoogle Scholar
  22. 22.
    Chandie Shaw PK, Vandenbroucke JP, Tjandra YI, Rosendaal FR, Rosman JB, Geerlings W, de Charro FT, van Es LA. Increased end-stage diabetic nephropathy in indo-Asian immigrants living in the Netherlands. Diabetologia. 2002;45(3):337–41.  https://doi.org/10.1007/s00125-001-0758-5.CrossRefPubMedGoogle Scholar
  23. 23.
    Stewart JH, McCredie MR, McDonald SP. Incidence of end-stage renal disease in overseas-born, compared with Australian-born, non-indigenous Australians. Nephrology (Carlton). 2004;9(4):247–52.  https://doi.org/10.1111/j.1440-1797.2004.00258.x.CrossRefGoogle Scholar
  24. 24.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefGoogle Scholar
  25. 25.
    Al-Futaisi A, Al-Zakwani I, Almahrezi A, Al-Hajri R, Al-Hashmi L, Al-Muniri A, Farooqui M. Prevalence and predictors of microalbuminuria in patients with type 2 diabetes mellitus: a cross-sectional observational study in Oman. Diabetes Res Clin Pract. 2006;72(2):212–5.  https://doi.org/10.1016/j.diabres.2005.10.001.CrossRefPubMedGoogle Scholar
  26. 26.
    Al-Maskari F, El-Sadig M, Obineche E. Prevalence and determinants of microalbuminuria among diabetic patients in the United Arab Emirates. BMC Nephrol. 2008;9:1.  https://doi.org/10.1186/1471-2369-9-1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Al-Rubeaan K, Youssef AM, Subhani SN, Ahmad NA, Al-Sharqawi AH, Al-Mutlaq HM, David SK, AlNaqeb D. Diabetic nephropathy and its risk factors in a society with a type 2 diabetes epidemic: a Saudi National Diabetes Registry-based study. PLoS One. 2014;9(2):e88956.  https://doi.org/10.1371/journal.pone.0088956.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Annual Report. Hemodialysis in the Kingdom of Saudi Arabia; 2016.Google Scholar
  29. 29.
    The Microalbuminuria Collaborative Study Group. Predictors of the development of microalbuminuria in patients with type 1 diabetes mellitus: a seven-year prospective study. The Microalbuminuria Collaborative Study Group. Diabet Med. 1999;16(11):918–25.CrossRefGoogle Scholar
  30. 30.
    Mathiesen ER, Ronn B, Jensen T, Storm B, Deckert T. Relationship between blood pressure and urinary albumin excretion in development of microalbuminuria. Diabetes. 1990;39(2):245–9.CrossRefGoogle Scholar
  31. 31.
    Esmatjes E, De Alvaro F, Estudio Diamante I. Incidence of diabetic nephropathy in type 1 diabetic patients in Spain: ‘Estudio Diamante’. Diabetes Res Clin Pract. 2002;57(1):35–43.CrossRefGoogle Scholar
  32. 32.
    Bentata Y, Haddiya I, Latrech H, Serraj K, Abouqal R. Progression of diabetic nephropathy, risk of end-stage renal disease and mortality in patients with type-1 diabetes. Saudi J Kidney Dis Transpl. 2013;24(2):392–402.CrossRefGoogle Scholar
  33. 33.
    Marshall SL, Edidin D, Sharma V, Ogle G, Arena VC, Orchard T. Current clinical status, glucose control, and complication rates of children and youth with type 1 diabetes in Rwanda. Pediatr Diabetes. 2013;14(3):217–26.  https://doi.org/10.1111/pedi.12007.CrossRefPubMedGoogle Scholar
  34. 34.
    Rissassi JR, Nseka M, Jadoul M, Lepira FB, Mvitu M, Mbenza G, Yekoladio D, Aloni M, Nge OO. Prevalence and determinants of microalbuminuria and macroalbuminuria in children and young adults with type 1 diabetes in Kinshasa. Nephrol Ther. 2010;6(1):40–6.  https://doi.org/10.1016/j.nephro.2009.08.001.CrossRefPubMedGoogle Scholar
  35. 35.
    Al-Hermi BE, Al-Abbasi AM, Rajab MH, Al-Jenaidi FA, Al-Ekri ZE. Diabetic nephropathy in children with type 1 diabetes mellitus in Bahrain. Saudi Med J. 2005;26(2):294–7.PubMedGoogle Scholar
  36. 36.
    Dixon AN, Raymond NT, Mughal S, Rahim A, O'Hare JP, Kumar S, Barnett AH. Prevalence of microalbuminuria and hypertension in South Asians and white Europeans with type 2 diabetes: a report from the United Kingdom Asian Diabetes Study (UKADS). Diab Vasc Dis Res. 2006;3(1):22–5.  https://doi.org/10.3132/dvdr.2006.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Bhalla V, Zhao B, Azar KM, Wang EJ, Choi S, Wong EC, Fortmann SP, Palaniappan LP. Racial/ethnic differences in the prevalence of proteinuric and nonproteinuric diabetic kidney disease. Diabetes Care. 2013;36(5):1215–21.  https://doi.org/10.2337/dc12-0951.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kenealy T, Elley CR, Collins JF, Moyes SA, Metcalf PA, Drury PL. Increased prevalence of albuminuria among non-European peoples with type 2 diabetes. Nephrol Dial Transplant. 2012;27(5):1840–6.  https://doi.org/10.1093/ndt/gfr540.CrossRefPubMedGoogle Scholar
  39. 39.
    Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, Feldman HI, Parekh RS, Kusek JW, Greene TH, Fink JC, Anderson AH, Choi MJ, Wright JT, Lash JP, Freedman BI, Ojo A, Winkler CA, Raj DS, Kopp JB, He J, Jensvold NG, Tao K, Lipkowitz MS, Appel LJ, Investigators AS, Investigators CS. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–96.  https://doi.org/10.1056/NEJMoa1310345.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dreyer G, Hull S, Mathur R, Chesser A, Yaqoob MM. Progression of chronic kidney disease in a multi-ethnic community cohort of patients with diabetes mellitus. Diabet Med. 2013;30(8):956–63.  https://doi.org/10.1111/dme.12197.CrossRefPubMedGoogle Scholar
  41. 41.
    Garza R, Medina R, Basu S, Pugh JA. Predictors of the rate of renal function decline in non-insulin-dependent diabetes mellitus. Am J Nephrol. 1997;17(1):59–67.CrossRefGoogle Scholar
  42. 42.
    Chaiken RL, Palmisano J, Norton ME, Banerji MA, Bard M, Sachimechi I, Behzadi H, Lebovitz HE. Interaction of hypertension and diabetes on renal function in black NIDDM subjects. Kidney Int. 1995;47(6):1697–702.CrossRefGoogle Scholar
  43. 43.
    Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320(18):1161–5.  https://doi.org/10.1056/NEJM198905043201801.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1990;33(7):438–43.CrossRefGoogle Scholar
  45. 45.
    Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 1996;39(8):940–5.CrossRefGoogle Scholar
  46. 46.
    Ma RC, Cooper ME. Genetics of diabetic kidney disease-from the worst of nightmares to the light of Dawn? J Am Soc Nephrol. 2017;28(2):389–93.  https://doi.org/10.1681/ASN.2016091028.CrossRefGoogle Scholar
  47. 47.
    McKnight AJ, Duffy S, Maxwell AP. Genetics of diabetic nephropathy: a long road of discovery. Curr Diab Rep. 2015;15(7):41.  https://doi.org/10.1007/s11892-015-0610-9.CrossRefPubMedGoogle Scholar
  48. 48.
    Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol. 2008;3(5):1511–25.  https://doi.org/10.2215/CJN.04140907.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia. 2011;54(3):544–53.  https://doi.org/10.1007/s00125-010-1996-1.CrossRefPubMedGoogle Scholar
  50. 50.
    Palmer ND, Ng MC, Hicks PJ, Mudgal P, Langefeld CD, Freedman BI, Bowden DW. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease. PLoS One. 2014;9(2):e88273.  https://doi.org/10.1371/journal.pone.0088273.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thameem F, Kawalit IA, Adler SG, Abboud HE. Susceptibility gene search for nephropathy and related traits in Mexican-Americans. Mol Biol Rep. 2013;40(10):5769–79.  https://doi.org/10.1007/s11033-013-2680-6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    World Health Organisation. Global report on diabetes. Geneva: World Health Organization; 2016.Google Scholar
  53. 53.
    Bello AK, Levin A, Tonelli M, Okpechi IG, Feehally J, Harris D, Jindal K, Salako BL, Rateb A, Osman MA, Qarni B, Saad S, Lunney M, Wiebe N, Ye F, Johnson DW. Assessment of global kidney health care status. JAMA. 2017;317(18):1864–81.  https://doi.org/10.1001/jama.2017.4046.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(3):293–301.  https://doi.org/10.1016/j.diabres.2010.01.026.CrossRefPubMedGoogle Scholar
  55. 55.
    Jingi AM, Noubiap JJ, Ewane Onana A, Nansseu JR, Wang B, Kingue S, Kengne AP. Access to diagnostic tests and essential medicines for cardiovascular diseases and diabetes care: cost, availability and affordability in the west region of Cameroon. PLoS One. 2014;9(11):e111812.  https://doi.org/10.1371/journal.pone.0111812.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Grover S, Avasthi A, Bhansali A, Chakrabarti S, Kulhara P. Cost of ambulatory care of diabetes mellitus: a study from North India. Postgrad Med J. 2005;81(956):391–5.  https://doi.org/10.1136/pgmj.2004.024299.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kengne AP, June-Rose McHiza Z, Amoah AG, Mbanya JC. Cardiovascular diseases and diabetes as economic and developmental challenges in Africa. Prog Cardiovasc Dis. 2013;56(3):302–13.  https://doi.org/10.1016/j.pcad.2013.10.011.CrossRefPubMedGoogle Scholar
  58. 58.
    Perico N, Remuzzi G. Chronic kidney disease: a research and public health priority. Nephrol Dial Transplant. 2012;27(Suppl 3):iii19–26.  https://doi.org/10.1093/ndt/gfs284.CrossRefPubMedGoogle Scholar
  59. 59.
    George C, Mogueo A, Okpechi I, Echouffo-Tcheugui JB, Kengne AP. Chronic kidney disease in low-income to middle-income countries: the case for increased screening. BMJ Glob Health. 2017;2(2):e000256.  https://doi.org/10.1136/bmjgh-2016-000256.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Obrador GT, Garcia-Garcia G, Villa AR, Rubilar X, Olvera N, Ferreira E, Virgen M, Gutierrez-Padilla JA, Plascencia-Alonso M, Mendoza-Garcia M, Plascencia-Perez S. Prevalence of chronic kidney disease in the kidney early evaluation program (KEEP) Mexico and comparison with KEEP US. Kidney Int Suppl. 2010;116:S2–8.  https://doi.org/10.1038/ki.2009.540.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Oluwatoyin I. Ameh
    • 1
  • Ikechi G. Okpechi
    • 2
  • Charles Agyemang
    • 3
    Email author
  • Andre P. Kengne
    • 4
  1. 1.Zenith Medical and Kidney CentreAbujaNigeria
  2. 2.Kidney Research Unit, Division of Nephrology and Hypertension and Kidney and Hypertension Research UnitUniversity of Cape TownCape TownSouth Africa
  3. 3.Department of Public HealthAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
  4. 4.Non Communicable Diseases Research Unit, South African Medical Research Council and, Department of MedicineUniversity of Cape TownCape TownSouth Africa

Personalised recommendations