Advertisement

Omics in Diabetic Kidney Disease

  • Massimo Papale
  • Francesca Conserva
  • Paola Pontrelli
  • Loreto GesualdoEmail author
Chapter

Abstract

The sequencing of the human genome has led to a new era of molecular diagnostics through the development of omics sciences that, from genomics to metabolomics, may now allow to analyze thousands of genes, transcripts, proteins, and metabolites and correlate their expression to the clinical phenotype of many disease conditions. It is a shared expectation that this huge amount of information will enable, in the coming years, the development of new and more accurate tools for personalized medicine. In this chapter we will describe the main omics fields: genomics, epigenomics, transcriptomics, proteomics, and metabolomics. A brief introduction will cover the main discoveries that contributed to the evolution of each field, and then the reader will be guided through the most popular techniques and methods used to characterize and study the molecules within each omics. Finally, some among the main omics studies in diabetic kidney disease and diabetic nephropathy (DN) will be presented and discussed. In the final part, we will analyze the main drawbacks of current approaches and the actions needed to improve the reliability of the data generated through omics in order to realize new point-of-care tests applicable for the real-time health status monitoring.

Keywords

Diabetic nephropathy Diabetic kidney disease Genomics Epigenomics Transcriptomics Proteomics Metabolomics 

Notes

Acknowledgments

We want like to thank Dr. Eustacchio Montemurno for the realization of figures of this manuscript.

References

  1. 1.
    Conserva F, Gesualdo L, Papale M. A systems biology overview on human diabetic nephropathy: from genetic susceptibility to post-transcriptional and post-translational modifications. J Diabetes Res. 2016;2016:7934504.CrossRefGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefGoogle Scholar
  3. 3.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.CrossRefGoogle Scholar
  4. 4.
    Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J. Cowper-Sal lari R, Lupien M, Markowitz S, Scacheri PC: combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 2014;24(1):1–13.CrossRefGoogle Scholar
  5. 5.
    Hayden EC. Technology: the $1,000 genome. Nature. 2014;507(7492):294–5.CrossRefGoogle Scholar
  6. 6.
    Kramer H, Palmas W, Kestenbaum B, Cushman M, Allison M, Astor B, Shlipak M. Chronic kidney disease prevalence estimates among racial/ethnic groups: the multi-ethnic study of atherosclerosis. Clin J Am Soc Nephrol. 2008;3(5):1391–7.CrossRefGoogle Scholar
  7. 7.
    Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320(18):1161–5.CrossRefGoogle Scholar
  8. 8.
    Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia. 2011;54(3):544–53.CrossRefGoogle Scholar
  9. 9.
    Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J, Mychaleckyj JC, Rich SS, Warram JH, Krolewski AS. Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes. 2009;58(11):2698–702.CrossRefGoogle Scholar
  10. 10.
    Hanson RL, Millis MP, Young NJ, Kobes S, Nelson RG, Knowler WC, DiStefano JK. ELMO1 variants and susceptibility to diabetic nephropathy in American Indians. Mol Genet Metab. 2010;101(4):383–90.CrossRefGoogle Scholar
  11. 11.
    Wu HY, Wang Y, Chen M, Zhang X, Wang D, Pan Y, Li L, Liu D, Dai XM. Association of ELMO1 gene polymorphisms with diabetic nephropathy in Chinese population. J Endocrinol Investig. 2013;36(5):298–302.Google Scholar
  12. 12.
    Germain M, Pezzolesi MG, Sandholm N, McKnight AJ, Susztak K, Lajer M, Forsblom C, Marre M, Parving HH, Rossing P, et al. SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia. 2015;58(3):543–8.CrossRefGoogle Scholar
  13. 13.
    An Y, Xu F, Le W, Ge Y, Zhou M, Chen H, Zeng C, Zhang H, Liu Z. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant. 2015;30(2):257–66.CrossRefGoogle Scholar
  14. 14.
    Fiorentino M, Bolignano D, Tesar V, Pisano A, Van Biesen W, D'Arrigo G, Tripepi G, Gesualdo L. Renal biopsy in 2015--from epidemiology to evidence-based indications. Am J Nephrol. 2016;43(1):1–19.CrossRefGoogle Scholar
  15. 15.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.CrossRefGoogle Scholar
  16. 16.
    Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.CrossRefGoogle Scholar
  17. 17.
    Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26(37):5310–8.CrossRefGoogle Scholar
  18. 18.
    Rossetto D, Avvakumov N, Cote J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 2012;7(10):1098–108.CrossRefGoogle Scholar
  19. 19.
    Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol. 2012;2:26.CrossRefGoogle Scholar
  20. 20.
    Ziller MJ, Hansen KD, Meissner A, Aryee MJ. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods. 2015;12(3):230–2. 231 p following 232.CrossRefGoogle Scholar
  21. 21.
    Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol. 2010;6(12):665–75.CrossRefGoogle Scholar
  22. 22.
    Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet. 2010;3:33.Google Scholar
  23. 23.
    Tregouet DA, Groop PH, McGinn S, Forsblom C, Hadjadj S, Marre M, Parving HH, Tarnow L, Telgmann R, Godefroy T, et al. G/T substitution in intron 1 of the UNC13B gene is associated with increased risk of nephropathy in patients with type 1 diabetes. Diabetes. 2008;57(10):2843–50.CrossRefGoogle Scholar
  24. 24.
    Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J, Siraj ES, Madaio M. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics. 2011;6(1):20–8.CrossRefGoogle Scholar
  25. 25.
    Reddy MA, Sumanth P, Lanting L, Yuan H, Wang M, Mar D, Alpers CE, Bomsztyk K, Natarajan R. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014;85(2):362–73.CrossRefGoogle Scholar
  26. 26.
    Krishnan J, Mishra RK. Emerging trends of long non-coding RNAs in gene activation. FEBS J. 2014;281(1):34–45.CrossRefGoogle Scholar
  27. 27.
    Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7(2):68–74.CrossRefGoogle Scholar
  28. 28.
    Baelde HJ, Eikmans M, Doran PP, Lappin DW, de Heer E, Bruijn JA. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis. 2004;43(4):636–50.CrossRefGoogle Scholar
  29. 29.
    Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes. 2011;60(9):2354–69.CrossRefGoogle Scholar
  30. 30.
    Rudnicki M, Beckers A, Neuwirt H, Vandesompele J. RNA expression signatures and posttranscriptional regulation in diabetic nephropathy. Nephrol Dial Transplant. 2015;30(Suppl 4):iv35–42.CrossRefGoogle Scholar
  31. 31.
    Wang G, Lai FM, Chow KM, Kwan BC, Pang WF, Luk CC, Leung CB, Li PK, Szeto CC. Urinary mRNA levels of ELR-negative CXC chemokine ligand and extracellular matrix in diabetic nephropathy. Diabetes Metab Res Rev. 2015;31(7):699–706.CrossRefGoogle Scholar
  32. 32.
    Zheng M, Lv LL, Cao YH, Liu H, Ni J, Dai HY, Liu D, Lei XD, Liu BC. A pilot trial assessing urinary gene expression profiling with an mRNA array for diabetic nephropathy. PLoS One. 2012;7(5):e34824.CrossRefGoogle Scholar
  33. 33.
    Zheng M, Lv LL, Cao YH, Zhang JD, Wu M, Ma KL, Phillips AO, Liu BC. Urinary mRNA markers of epithelial-mesenchymal transition correlate with progression of diabetic nephropathy. Clin Endocrinol. 2012;76(5):657–64.CrossRefGoogle Scholar
  34. 34.
    Zheng M, Lv LL, Ni J, Ni HF, Li Q, Ma KL, Liu BC. Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One. 2011;6(5):e20431.CrossRefGoogle Scholar
  35. 35.
    Alvarez ML, Distefano JK. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract. 2013;99(1):1–11.CrossRefGoogle Scholar
  36. 36.
    Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9(9):513–21.CrossRefGoogle Scholar
  37. 37.
    Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11(1):23–33.CrossRefGoogle Scholar
  38. 38.
    Kato M, Natarajan R. Diabetic nephropathy--emerging epigenetic mechanisms. Nat Rev Nephrol. 2014;10(9):517–30.CrossRefGoogle Scholar
  39. 39.
    Hennino MF, Buob D, Van der Hauwaert C, Gnemmi V, Jomaa Z, Pottier N, Savary G, Drumez E, Noel C, Cauffiez C, et al. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy. Sci Rep. 2016;6:27209.CrossRefGoogle Scholar
  40. 40.
    Gupta SK, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F, Van Aelst LN, Sharma A, Piccoli MT, Weinberger F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res. 2016;110(2):215–26.CrossRefGoogle Scholar
  41. 41.
    Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra118.CrossRefGoogle Scholar
  42. 42.
    Reddy S, Hu DQ, Zhao M, Blay E Jr, Sandeep N, Ong SG, Jung G, Kooiker KB, Coronado M, Fajardo G, et al. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight. 2017;2(9):e91625.Google Scholar
  43. 43.
    Glowacki F, Savary G, Gnemmi V, Buob D, Van der Hauwaert C, Lo-Guidice JM, Bouye S, Hazzan M, Pottier N, Perrais M, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One. 2013;8(2):e58014.CrossRefGoogle Scholar
  44. 44.
    Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M. Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol. 2013;50(6):965–9.CrossRefGoogle Scholar
  45. 45.
    Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia. 2013;56(3):444–56.CrossRefGoogle Scholar
  46. 46.
    Long J, Wang Y, Wang W, Chang BH, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286(13):11837–48.CrossRefGoogle Scholar
  47. 47.
    Pertea M, Salzberg SL. Between a chicken and a grape: estimating the number of human genes. Genome Biol. 2010;11(5):206.CrossRefGoogle Scholar
  48. 48.
    Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–301.CrossRefGoogle Scholar
  49. 49.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.CrossRefGoogle Scholar
  50. 50.
    Papale M, Di Paolo S, Vocino G, Rocchetti MT, Gesualdo L. Proteomics and diabetic nephropathy: what have we learned from a decade of clinical proteomics studies? J Nephrol. 2014;27(3):221–8.CrossRefGoogle Scholar
  51. 51.
    Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem. 2001;70:437–73.CrossRefGoogle Scholar
  52. 52.
    Klein E, Klein JB, Thongboonkerd V. Two-dimensional gel electrophoresis: a fundamental tool for expression proteomics studies. Contrib Nephrol. 2004;141:25–39.CrossRefGoogle Scholar
  53. 53.
    Gallien S, Domon B. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry. Methods. 2015;81:15–23.CrossRefGoogle Scholar
  54. 54.
    Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.CrossRefGoogle Scholar
  55. 55.
    Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev. 2005;24(6):959–77.CrossRefGoogle Scholar
  56. 56.
    Huang Y, Zhu H. Protein Array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinformatics. 2017;15(2):73–81.CrossRefGoogle Scholar
  57. 57.
    Sutandy FX, Qian J, Chen CS, Zhu H: Overview of protein microarrays. Curr Protoc Protein Sci 2013, Chapter 27:Unit 27 21.Google Scholar
  58. 58.
    Gesualdo L, Di Paolo S. Renal lesions in patients with type 2 diabetes: a puzzle waiting to be solved. Nephrol Dial Transplant. 2015;30(2):155–7.CrossRefGoogle Scholar
  59. 59.
    Ralton LD, Murray GI. The use of formalin fixed wax embedded tissue for proteomic analysis. J Clin Pathol. 2011;64(4):297–302.CrossRefGoogle Scholar
  60. 60.
    Linton JM, Martin GR, Reichardt LF. The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development. 2007;134(13):2501–9.CrossRefGoogle Scholar
  61. 61.
    Satoskar AA, Shapiro JP, Bott CN, Song H, Nadasdy GM, Brodsky SV, Hebert LA, Birmingham DJ, Nadasdy T, Freitas MA, et al. Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod Pathol. 2012;25(5):709–21.CrossRefGoogle Scholar
  62. 62.
    Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23(6):753–62.CrossRefGoogle Scholar
  63. 63.
    Bramham K, Mistry HD, Poston L, Chappell LC, Thompson AJ. The non-invasive biopsy--will urinary proteomics make the renal tissue biopsy redundant? QJM. 2009;102(8):523–38.CrossRefGoogle Scholar
  64. 64.
    Zurbig P, Jerums G, Hovind P, Macisaac RJ, Mischak H, Nielsen SE, Panagiotopoulos S, Persson F, Rossing P. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304–13.CrossRefGoogle Scholar
  65. 65.
    Siwy J, Zurbig P, Argiles A, Beige J, Haubitz M, Jankowski J, Julian BA, Linde PG, Marx D, Mischak H, et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant. 2017;32(12):2079–89.Google Scholar
  66. 66.
    Van JA, Scholey JW, Konvalinka A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics. J Am Soc Nephrol. 2017;28(4):1050–61.CrossRefGoogle Scholar
  67. 67.
    Merchant ML, Perkins BA, Boratyn GM, Ficociello LH, Wilkey DW, Barati MT, Bertram CC, Page GP, Rovin BH, Warram JH, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol. 2009;20(9):2065–74.CrossRefGoogle Scholar
  68. 68.
    Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, Bakker SJ, Gansevoort RT, Rossing P, de Zeeuw D, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet Med. 2014;31(9):1138–47.CrossRefGoogle Scholar
  69. 69.
    Papale M, Di Paolo S, Magistroni R, Lamacchia O, Di Palma AM, De Mattia A, Rocchetti MT, Furci L, Pasquali S, De Cosmo S, et al. Urine proteome analysis may allow noninvasive differential diagnosis of diabetic nephropathy. Diabetes Care. 2010;33(11):2409–15.CrossRefGoogle Scholar
  70. 70.
    Pontrelli P, Conserva F, Papale M, Oranger A, Barozzino M, Vocino G, Rocchetti MT, Gigante M, Castellano G, Rossini M, et al. Lysine 63 ubiquitination is involved in the progression of tubular damage in diabetic nephropathy. FASEB J. 2017;31(1):308–19.CrossRefGoogle Scholar
  71. 71.
    Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes. 2009;58(11):2429–43.CrossRefGoogle Scholar
  72. 72.
    Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23.CrossRefGoogle Scholar
  73. 73.
    Bothwell JH, Griffin JL. An introduction to biological nuclear magnetic resonance spectroscopy. Biol Rev Camb Philos Soc. 2011;86(2):493–510.CrossRefGoogle Scholar
  74. 74.
    Ward JL, Baker JM, Beale MH. Recent applications of NMR spectroscopy in plant metabolomics. FEBS J. 2007;274(5):1126–31.CrossRefGoogle Scholar
  75. 75.
    Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387(2):525–7.CrossRefGoogle Scholar
  76. 76.
    Darshi M, Van Espen B, Sharma K. Metabolomics in diabetic kidney disease: unraveling the biochemistry of a silent killer. Am J Nephrol. 2016;44(2):92–103.CrossRefGoogle Scholar
  77. 77.
    Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2014;10(3):361–74.CrossRefGoogle Scholar
  78. 78.
    Li J, Shi Y, Toga AW. Controlling false discovery rate in signal space for transformation-invariant thresholding of statistical maps. Inf Process Med Imaging. 2015;24:125–36.PubMedGoogle Scholar
  79. 79.
    Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, Pu M, Sharma S, You YH, Wang L, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.CrossRefGoogle Scholar
  80. 80.
    van der Kloet FM, Tempels FW, Ismail N, van der Heijden R, Kasper PT, Rojas-Cherto M, van Doorn R, Spijksma G, Koek M, van der Greef J, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012;8(1):109–19.CrossRefGoogle Scholar
  81. 81.
    Xia JF, Liang QL, Liang XP, Wang YM, Hu P, Li P, Luo GA. Ultraviolet and tandem mass spectrometry for simultaneous quantification of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(20–21):1930–6.CrossRefGoogle Scholar
  82. 82.
    Zhu C, Liang QL, Hu P, Wang YM, Luo GA. Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta. 2011;85(4):1711–20.CrossRefGoogle Scholar
  83. 83.
    Weinberg JM. Lipotoxicity. Kidney Int. 2006;70(9):1560–6.CrossRefGoogle Scholar
  84. 84.
    Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.CrossRefGoogle Scholar
  85. 85.
    Han LD, Xia JF, Liang QL, Wang Y, Wang YM, Hu P, Li P, Luo GA. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689(1):85–91.CrossRefGoogle Scholar
  86. 86.
    Niewczas MA, Sirich TL, Mathew AV, Skupien J, Mohney RP, Warram JH, Smiles A, Huang X, Walker W, Byun J, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int. 2014;85(5):1214–24.CrossRefGoogle Scholar
  87. 87.
    Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67(3):483–98.CrossRefGoogle Scholar
  88. 88.
    Federoff HJ, Gostin LO. Evolving from reductionism to holism: is there a future for systems medicine? JAMA. 2009;302(9):994–6.CrossRefGoogle Scholar
  89. 89.
    Pesce F, Pathan S, Schena FP. From -omics to personalized medicine in nephrology: integration is the key. Nephrol Dial Transplant. 2013;28(1):24–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Massimo Papale
    • 1
  • Francesca Conserva
    • 1
  • Paola Pontrelli
    • 1
  • Loreto Gesualdo
    • 1
    Email author
  1. 1.Division of Nephrology, Department of Emergency and Organ TransplantationUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations