Preliminaries
Chapter
First Online:
Abstract
In this chapter, we recall some definitions and results as triangular norms (co-norm), fuzzy sets, and lattices which will be used later on in this book.
References
- 16.K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)MathSciNetCrossRefGoogle Scholar
- 39.G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 23, 227–235 (2003)MathSciNetCrossRefGoogle Scholar
- 54.J. Goguen, \(\mathcal {L}\)-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)Google Scholar
- 66.O. Hadžić, E. Pap, Fixed Point Theory in PM-Spaces (Kluwer Academic Publishers, Dordrecht, 2001)CrossRefGoogle Scholar
- 68.O. Hadžić, E. Pap, M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetica 38, 363–381 (2002)MathSciNetzbMATHGoogle Scholar
- 71.P. Hajek, Metamathematics of Fuzzy Logic (Kluwer Academic Publishers, Dordrecht, 1998)CrossRefGoogle Scholar
- 93.E.P. Klement, R. Mesiar, E. Pap, Triangular Norms (Kluwer Academic Publishers, Dordrecht, 2000)CrossRefGoogle Scholar
- 96.E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper III: continuous t-norms. Fuzzy Sets Syst. 145, 439–454 (2004)MathSciNetCrossRefGoogle Scholar
- 105.K. Menger, Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535–537 (1942)MathSciNetCrossRefGoogle Scholar
- 135.B. Schweizer, A. Sklar, Probabilistic Metric Spaces (Elsevier, North Holand, 1983)zbMATHGoogle Scholar
- 148.J.Z. Xiao, X.H. Zhu, X.Y. Liu, An alternative characterization of probabilistic Menger spaces with H-type triangular norms. Fuzzy Sets Syst. 227, 107–114 (2013)MathSciNetCrossRefGoogle Scholar
- 149.L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
- 153.H.J. Zimmermann, Fuzzy Set Theory and Its Application (Kluwer, Dordrecht, 1985)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018