Advertisement

Mycobacterium avium Complex Disease

  • Michael R. Holt
  • Charles L. Daley
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Mycobacterium avium complex (MAC) comprises at least ten named species of environmental mycobacteria that exhibit ecological and geographic diversity. The prominent human pathogens are M. avium, M. intracellulare, and M. chimaera. MAC virulence factors and host susceptibility contribute to pathogenesis. The diagnosis of pulmonary disease requires satisfaction of clinical, microbiologic, and radiographic criteria. Disseminated and localized extrapulmonary diseases are diagnosed by culture of blood or tissue. Treatment of all forms of MAC disease involves protracted administration of multiple antibiotics, including a macrolide. This therapeutic approach achieves initial success in patients with macrolide-susceptible, treatment-naïve pulmonary disease, but microbiologic recurrence is common. Inadequate treatment regimens increase the risk of emergent macrolide resistance which carries a poor prognosis. Parenteral therapy and surgical resection are beneficial for certain forms of pulmonary and extrapulmonary disease. Prophylaxis against MAC infection is strongly recommended in HIV-AIDS.

Keywords

Lung diseases Macrolide Mycobacterium avium complex Diagnosis Mycobacterium intracellulare Mycobacterium chimaera Surgical procedures, operative HIV Epidemiology Virulence 

References

  1. 1.
    Tortoli E, Rindi L, Garcia MJ, Chiaradonna P, Dei R, Garzelli C, et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol. 2004;54(Pt 4):1277–85.  https://doi.org/10.1099/ijs.0.02777-0. CrossRefPubMedGoogle Scholar
  2. 2.
    Chand M, Lamagni T, Kranzer K, Hedge J, Moore G, Parks S, et al. Insidious risk of severe Mycobacterium chimaera infection in cardiac surgery patients. Clin Infect Dis. 2017;64(3):335–42.  https://doi.org/10.1093/cid/ciw754.CrossRefPubMedGoogle Scholar
  3. 3.
    Murcia MI, Tortoli E, Menendez MC, Palenque E, Garcia MJ. Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int J Syst Evol Microbiol. 2006;56(Pt 9):2049–54.  https://doi.org/10.1099/ijs.0.64190-0. CrossRefPubMedGoogle Scholar
  4. 4.
    Bang D, Herlin T, Stegger M, Andersen AB, Torkko P, Tortoli E, et al. Mycobacterium arosiense sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocompromised child. Int J Syst Evol Microbiol. 2008;58(Pt 10):2398–402.  https://doi.org/10.1099/ijs.0.65503-0. CrossRefPubMedGoogle Scholar
  5. 5.
    Ben Salah I, Cayrou C, Raoult D, Drancourt M. Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov., members of the Mycobacterium avium complex. Int J Syst Evol Microbiol. 2009;59(Pt 11):2803–8.  https://doi.org/10.1099/ijs.0.010637-0. CrossRefPubMedGoogle Scholar
  6. 6.
    van Ingen J, Boeree MJ, Kosters K, Wieland A, Tortoli E, Dekhuijzen PN, et al. Proposal to elevate Mycobacterium avium complex ITS sequevar MAC-Q to Mycobacterium vulneris sp. nov. Int J Syst Evol Microbiol. 2009;59(Pt 9):2277–82.  https://doi.org/10.1099/ijs.0.008854-0. CrossRefPubMedGoogle Scholar
  7. 7.
    Kim BJ, Math RK, Jeon CO, Yu HK, Park YG, Kook YH, et al. Mycobacterium yongonense sp. nov., a slow-growing non-chromogenic species closely related to Mycobacterium intracellulare. Int J Syst Evol Microbiol. 2013;63(Pt 1):192–9.  https://doi.org/10.1099/ijs.0.037465-0.CrossRefPubMedGoogle Scholar
  8. 8.
    Rindi L, Garzelli C. Genetic diversity and phylogeny of Mycobacterium avium. Infect Genet Evol. 2014;21:375–83.  https://doi.org/10.1016/j.meegid.2013.12.007.CrossRefPubMedGoogle Scholar
  9. 9.
    Tran QT, Han XY. Subspecies identification and significance of 257 clinical strains of Mycobacterium avium. J Clin Microbiol. 2014;52(4):1201–6.  https://doi.org/10.1128/JCM.03399-13.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koh WJ, Jeong BH, Jeon K, Lee NY, Lee KS, Woo SY, et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M avium complex lung disease. Chest. 2012;142(6):1482–8.  https://doi.org/10.1378/chest.12-0494.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim SY, Shin SH, Moon SM, Yang B, Kim H, Kwon OJ, et al. Distribution and clinical significance of Mycobacterium avium complex species isolated from respiratory specimens. Diagn Microbiol Infect Dis. 2017;88(2):125–37.  https://doi.org/10.1016/j.diagmicrobio.2017.02.017.CrossRefPubMedGoogle Scholar
  12. 12.
    Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36(1):13–34.  https://doi.org/10.1016/j.ccm.2014.10.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13.  https://doi.org/10.1183/09031936.00149212.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60.  https://doi.org/10.1016/S0140-6736(13)60632-7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Telles MA, Yates MD, Curcio M, Ueki SY, Palaci M, Hadad DJ, et al. Molecular epidemiology of Mycobacterium avium complex isolated from patients with and without AIDS in Brazil and England. Epidemiol Infect. 1999;122(3):435–40.CrossRefGoogle Scholar
  16. 16.
    Taylor RH, Falkinham JO 3rd, Norton CD, LeChevallier MW. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol. 2000;66(4):1702–5.CrossRefGoogle Scholar
  17. 17.
    Falkinham JO 3rd, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol. 2001;67(3):1225–31.  https://doi.org/10.1128/AEM.67.3.1225-1231.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A. 2009;106(38):16393–9.  https://doi.org/10.1073/pnas.0908446106.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    De Groote MA, Pace NR, Fulton K, Falkinham JO 3rd. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol. 2006;72(12):7602–6.  https://doi.org/10.1128/AEM.00930-06.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nishiuchi Y, Tamura A, Kitada S, Taguri T, Matsumoto S, Tateishi Y, et al. Mycobacterium avium complex organisms predominantly colonize in the bathtub inlets of patients’ bathrooms. Jpn J Infect Dis. 2009;62(3):182–6.PubMedGoogle Scholar
  21. 21.
    Falkinham JO 3rd, Iseman MD, de Haas P, van Soolingen D. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008;6(2):209–13.  https://doi.org/10.2166/wh.2008.032. CrossRefGoogle Scholar
  22. 22.
    Falkinham JO 3rd. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17(3):419–24.  https://doi.org/10.3201/eid1703.101510.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wallace RJ Jr, Iakhiaeva E, Williams MD, Brown-Elliott BA, Vasireddy S, Vasireddy R, et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51(6):1747–52.  https://doi.org/10.1128/JCM.00186-13.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chou MP, Clements AC, Thomson RM. A spatial epidemiological analysis of nontuberculous mycobacterial infections in Queensland, Australia. BMC Infect Dis. 2014;14:279.  https://doi.org/10.1186/1471-2334-14-279.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Honda JR, Hasan NA, Davidson RM, Williams MD, Epperson LE, Reynolds PR, et al. Environmental Nontuberculous mycobacteria in the Hawaiian islands. PLoS Negl Trop Dis. 2016;10(10):e0005068.  https://doi.org/10.1371/journal.pntd.0005068.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kohler P, Kuster SP, Bloemberg G, Schulthess B, Frank M, Tanner FC, et al. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur Heart J. 2015;36(40):2745–53.  https://doi.org/10.1093/eurheartj/ehv342.CrossRefPubMedGoogle Scholar
  27. 27.
    Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, et al. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015;61(1):67–75.  https://doi.org/10.1093/cid/civ198.CrossRefPubMedGoogle Scholar
  28. 28.
    Svensson E, Jensen ET, Rasmussen EM, Folkvardsen DB, Norman A, Lillebaek T. Mycobacterium chimaera in heater-cooler units in Denmark related to isolates from the United States and United Kingdom. Emerg Infect Dis. 2017;23(3):507–9.  https://doi.org/10.3201/eid2303.161941.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    McGarvey JA, Bermudez LE. Phenotypic and genomic analyses of the Mycobacterium avium complex reveal differences in gastrointestinal invasion and genomic composition. Infect Immun. 2001;69(12):7242–9.  https://doi.org/10.1128/IAI.69.12.7242-7249.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stout JE, Hopkins GW, McDonald JR, Quinn A, Hamilton CD, Reller LB, et al. Association between 16S-23S internal transcribed spacer sequence groups of Mycobacterium avium complex and pulmonary disease. J Clin Microbiol. 2008;46(8):2790–3.  https://doi.org/10.1128/JCM.00719-08.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tateishi Y, Hirayama Y, Ozeki Y, Nishiuchi Y, Yoshimura M, Kang J, et al. Virulence of Mycobacterium avium complex strains isolated from immunocompetent patients. Microb Pathog. 2009;46(1):6–12.  https://doi.org/10.1016/j.micpath.2008.10.007.CrossRefPubMedGoogle Scholar
  32. 32.
    Bruffaerts N, Vluggen C, Roupie V, Duytschaever L, Van den Poel C, Denoel J, et al. Virulence and immunogenicity of genetically defined human and porcine isolates of M. Avium subsp. hominissuis in an experimental mouse infection. PLoS One. 2017;12(2):e0171895.  https://doi.org/10.1371/journal.pone.0171895.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kikuchi T, Watanabe A, Gomi K, Sakakibara T, Nishimori K, Daito H, et al. Association between mycobacterial genotypes and disease progression in Mycobacterium avium pulmonary infection. Thorax. 2009;64(10):901–7.  https://doi.org/10.1136/thx.2009.114603.CrossRefPubMedGoogle Scholar
  34. 34.
    Takegaki Y. Effect of serotype specific glycopeptidolipid (GPL) isolated from Mycobacterium avium complex (MAC) on phagocytosis and phagosome-lysosome fusion of human peripheral blood monocytes. Kekkaku. 2000;75(1):9–18.PubMedGoogle Scholar
  35. 35.
    Turenne CY, Wallace R Jr, Behr MA. Mycobacterium avium in the postgenomic era. Clin Microbiol Rev. 2007;20(2):205–29.  https://doi.org/10.1128/CMR.00036-06. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sweet L, Singh PP, Azad AK, Rajaram MV, Schlesinger LS, Schorey JS. Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun. 2010;78(1):518–26.  https://doi.org/10.1128/IAI.00257-09.CrossRefPubMedGoogle Scholar
  37. 37.
    Bhatnagar S, Schorey JS. Elevated mitogen-activated protein kinase signalling and increased macrophage activation in cells infected with a glycopeptidolipid-deficient Mycobacterium avium. Cell Microbiol. 2006;8(1):85–96.  https://doi.org/10.1111/j.1462-5822.2005.00602.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Belisle JT, Klaczkiewicz K, Brennan PJ, Jacobs WR Jr, Inamine JM. Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J Biol Chem. 1993;268(14):10517–23.PubMedGoogle Scholar
  39. 39.
    Yamazaki Y, Danelishvili L, Wu M, Macnab M, Bermudez LE. Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol. 2006;72(1):819–25.  https://doi.org/10.1128/AEM.72.1.819-825.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rindi L, Bonanni D, Lari N, Garzelli C. Most human isolates of Mycobacterium avium Mav-a and Mav-B are strong producers of hemolysin, a putative virulence factor. J Clin Microbiol. 2003;41(12):5738–40.CrossRefGoogle Scholar
  41. 41.
    Ghassemi M, Asadi FK, Andersen BR, Novak RM. Mycobacterium avium induces HIV upregulation through mechanisms independent of cytokine induction. AIDS Res Hum Retrovir. 2000;16(5):435–40.  https://doi.org/10.1089/088922200309098.CrossRefPubMedGoogle Scholar
  42. 42.
    Vazquez N, Greenwell-Wild T, Rekka S, Orenstein JM, Wahl SM. Mycobacterium avium-induced SOCS contributes to resistance to IFN-gamma-mediated mycobactericidal activity in human macrophages. J Leukoc Biol. 2006;80(5):1136–44.  https://doi.org/10.1189/jlb.0306206.CrossRefPubMedGoogle Scholar
  43. 43.
    Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med. 2015;36(1):1–11.  https://doi.org/10.1016/j.ccm.2014.10.001.CrossRefPubMedGoogle Scholar
  44. 44.
    Thomson RM, Armstrong JG, Looke DF. Gastroesophageal reflux disease, acid suppression, and Mycobacterium avium complex pulmonary disease. Chest. 2007;131(4):1166–72.  https://doi.org/10.1378/chest.06-1906.CrossRefPubMedGoogle Scholar
  45. 45.
    Koh WJ, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP, et al. Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest. 2007;131(6):1825–30.  https://doi.org/10.1378/chest.06-2280.CrossRefPubMedGoogle Scholar
  46. 46.
    Andrejak C, Nielsen R, Thomsen VO, Duhaut P, Sorensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax. 2013;68(3):256–62.  https://doi.org/10.1136/thoraxjnl-2012-201772.CrossRefPubMedGoogle Scholar
  47. 47.
    van Ingen J, Boeree MJ, Dekhuijzen PN, van Soolingen D. Mycobacterial disease in patients with rheumatic disease. Nat Clin Pract Rheumatol. 2008;4(12):649–56.  https://doi.org/10.1038/ncprheum0949.CrossRefPubMedGoogle Scholar
  48. 48.
    Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.  https://doi.org/10.1016/S0140-6736(04)17552-1.CrossRefPubMedGoogle Scholar
  49. 49.
    Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.  https://doi.org/10.1164/rccm.200604-571ST.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tsukamura M. Diagnosis of disease caused by Mycobacterium avium complex. Chest. 1991;99(3):667–9.CrossRefGoogle Scholar
  51. 51.
    Koh WJ, Chang B, Ko Y, Jeong BH, Hong G, Park HY, et al. Clinical significance of a single isolation of pathogenic nontuberculous mycobacteria from sputum specimens. Diagn Microbiol Infect Dis. 2013;75(2):225–6.  https://doi.org/10.1016/j.diagmicrobio.2012.09.021.CrossRefPubMedGoogle Scholar
  52. 52.
    Sugihara E, Hirota N, Niizeki T, Tanaka R, Nagafuchi M, Koyanagi T, et al. Usefulness of bronchial lavage for the diagnosis of pulmonary disease caused by Mycobacterium avium-intracellulare complex (MAC) infection. J Infect Chemother. 2003;9(4):328–32.  https://doi.org/10.1007/s10156-003-0267-1.CrossRefPubMedGoogle Scholar
  53. 53.
    Ikedo Y. The significance of bronchoscopy for the diagnosis of Mycobacterium avium complex (MAC) pulmonary disease. Kurume Med J. 2001;48(1):15–9.CrossRefGoogle Scholar
  54. 54.
    Koh WJ, Kwon OJ, Lee KS. Nontuberculous mycobacterial pulmonary diseases in immunocompetent patients. Korean J Radiol. 2002;3(3):145–57. doi:2002v3n3p145 [pii]CrossRefGoogle Scholar
  55. 55.
    Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an isolated lingular or middle lobe pattern. The Lady Windermere syndrome. Chest. 1992;101(6):1605–9.CrossRefGoogle Scholar
  56. 56.
    Thomson RM. NTM working group at Queensland TB control Centre and Queensland mycobacterial reference laboratory. Emerg Infect Dis. 2010;16(10):1576–83.  https://doi.org/10.3201/eid1610.091201.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kim RD, Greenberg DE, Ehrmantraut ME, Guide SV, Ding L, Shea Y, et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med. 2008;178(10):1066–74.  https://doi.org/10.1164/rccm.200805-686OC.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chan ED, Iseman MD. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend Med. 2010;7(1):5–18.  https://doi.org/10.1016/j.genm.2010.01.005.CrossRefPubMedGoogle Scholar
  59. 59.
    Kartalija M, Ovrutsky AR, Bryan CL, Pott GB, Fantuzzi G, Thomas J, et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am J Respir Crit Care Med. 2013;187(2):197–205.  https://doi.org/10.1164/rccm.201206-1035OC.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Szymanski EP, Leung JM, Fowler CJ, Haney C, Hsu AP, Chen F, et al. Pulmonary Nontuberculous mycobacterial infection. A multisystem, multigenic disease. Am J Respir Crit Care Med. 2015;192(5):618–28.  https://doi.org/10.1164/rccm.201502-0387OC.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kitada S, Maekura R, Toyoshima N, Naka T, Fujiwara N, Kobayashi M, et al. Use of glycopeptidolipid core antigen for serodiagnosis of mycobacterium avium complex pulmonary disease in immunocompetent patients. Clin Diagn Lab Immunol. 2005;12(1):44–51.  https://doi.org/10.1128/CDLI.12.1.44-51.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kitada S, Kobayashi K, Ichiyama S, Takakura S, Sakatani M, Suzuki K, et al. Serodiagnosis of Mycobacterium avium-complex pulmonary disease using an enzyme immunoassay kit. Am J Respir Crit Care Med. 2008;177(7):793–7.  https://doi.org/10.1164/rccm.200705-771OC.CrossRefPubMedGoogle Scholar
  63. 63.
    Kitada S, Levin A, Hiserote M, Harbeck RJ, Czaja CA, Huitt G, et al. Serodiagnosis of Mycobacterium avium complex pulmonary disease in the USA. Eur Respir J. 2013;42(2):454–60.  https://doi.org/10.1183/09031936.00098212.CrossRefPubMedGoogle Scholar
  64. 64.
    Embil J, Warren P, Yakrus M, Stark R, Corne S, Forrest D, et al. Pulmonary illness associated with exposure to Mycobacterium-avium complex in hot tub water. Hypersensitivity pneumonitis or infection? Chest. 1997;111(3):813–6.CrossRefGoogle Scholar
  65. 65.
    Marras TK, Wallace RJ Jr, Koth LL, Stulbarg MS, Cowl CT, Daley CL. Hypersensitivity pneumonitis reaction to Mycobacterium avium in household water. Chest. 2005;127(2):664–71.  https://doi.org/10.1378/chest.127.2.664.CrossRefPubMedGoogle Scholar
  66. 66.
    Centers for Disease Control and Prevention. Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous mycobacteria—Ohio, 2001. MMWR. 2002;51(16):349–52.Google Scholar
  67. 67.
    Hartman TE, Jensen E, Tazelaar HD, Hanak V, Ryu JH. CT findings of granulomatous pneumonitis secondary to Mycobacterium avium-intracellulare inhalation: “hot tub lung”. AJR. 2007;188(4):1050–3.  https://doi.org/10.2214/AJR.06.0546.CrossRefPubMedGoogle Scholar
  68. 68.
    Hanak V, Kalra S, Aksamit TR, Hartman TE, Tazelaar HD, Ryu JH. Hot tub lung: presenting features and clinical course of 21 patients. Respir Med. 2006;100(4):610–5.  https://doi.org/10.1016/j.rmed.2005.08.005.CrossRefPubMedGoogle Scholar
  69. 69.
    Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT, Onyi GO, et al. Initial clarithromycin monotherapy for Mycobacterium avium-intracellulare complex lung disease. Am J Respir Crit Care Med. 1994;149(5):1335–41.  https://doi.org/10.1164/ajrccm.149.5.8173775.CrossRefPubMedGoogle Scholar
  70. 70.
    Dautzenberg B, Piperno D, Diot P, Truffot-Pernot C, Chauvin JP. Clarithromycin in the treatment of Mycobacterium avium lung infections in patients without AIDS. Clarithromycin study group of France. Chest. 1995;107(4):1035–40.CrossRefGoogle Scholar
  71. 71.
    Wallace RJ Jr, Brown BA, Griffith DE, Girard WM, Murphy DT. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am J Respir Crit Care Med. 1996;153(6 Pt 1):1766–72.  https://doi.org/10.1164/ajrccm.153.6.8665032. CrossRefPubMedGoogle Scholar
  72. 72.
    Tanaka E, Kimoto T, Tsuyuguchi K, Watanabe I, Matsumoto H, Niimi A, et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am J Respir Crit Care Med. 1999;160(3):866–72.  https://doi.org/10.1164/ajrccm.160.3.9811086.CrossRefPubMedGoogle Scholar
  73. 73.
    Wallace RJ Jr, Brown BA, Griffith DE. Drug intolerance to high-dose clarithromycin among elderly patients. Diagn Microbiol Infect Dis. 1993;16(3):215–21.CrossRefGoogle Scholar
  74. 74.
    Wallace RJ Jr, Brown-Elliott BA, McNulty S, Philley JV, Killingley J, Wilson RW, et al. Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest. 2014;146(2):276–82.  https://doi.org/10.1378/chest.13-2538.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Griffith DE, Brown BA, Girard WM, Murphy DT, Wallace RJ Jr. Azithromycin activity against Mycobacterium avium complex lung disease in patients who were not infected with human immunodeficiency virus. Clin Infect Dis. 1996;23(5):983–9.CrossRefGoogle Scholar
  76. 76.
    Zuckerman JM, Qamar F, Bono BR. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am. 2011;95(4):761–91.  https://doi.org/10.1016/j.mcna.2011.03.012.CrossRefPubMedGoogle Scholar
  77. 77.
    Chaisson RE, Benson CA, Dube MP, Heifets LB, Korvick JA, Elkin S, et al. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease. A randomized, double-blind, dose-ranging study in patients with AIDS. AIDS Clinical Trials Group protocol 157 study team. Ann Intern Med. 1994;121(12):905–11.CrossRefGoogle Scholar
  78. 78.
    Gordin FM, Sullam PM, Shafran SD, Cohn DL, Wynne B, Paxton L, et al. A randomized, placebo-controlled study of rifabutin added to a regimen of clarithromycin and ethambutol for treatment of disseminated infection with Mycobacterium avium complex. Clin Infect Dis. 1999;28(5):1080–5.  https://doi.org/10.1086/514748.CrossRefPubMedGoogle Scholar
  79. 79.
    Miwa S, Shirai M, Toyoshima M, Shirai T, Yasuda K, Yokomura K, et al. Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc. 2014;11(1):23–9.  https://doi.org/10.1513/AnnalsATS.201308-266OC.CrossRefPubMedGoogle Scholar
  80. 80.
    Griffith DE, Brown BA, Girard WM, Griffith BE, Couch LA, Wallace RJ Jr. Azithromycin-containing regimens for treatment of Mycobacterium avium complex lung disease. Clin Infect Dis. 2001;32(11):1547–53.  https://doi.org/10.1086/320512.CrossRefPubMedGoogle Scholar
  81. 81.
    Koh WJ, Jeong BH, Jeon K, Lee SY, Shin SJ. Therapeutic drug monitoring in the treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2012;186(8):797–802.  https://doi.org/10.1164/rccm.201206-1088OC.CrossRefPubMedGoogle Scholar
  82. 82.
    Griffith DE, Brown BA, Murphy DT, Girard WM, Couch L, Wallace RJ Jr. Initial (6-month) results of three-times-weekly azithromycin in treatment regimens for Mycobacterium avium complex lung disease in human immunodeficiency virus-negative patients. J Infect Dis. 1998;178(1):121–6.CrossRefGoogle Scholar
  83. 83.
    Jeong BH, Jeon K, Park HY, Kim SY, Lee KS, Huh HJ, et al. Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2015;191(1):96–103.  https://doi.org/10.1164/rccm.201408-1545OC.CrossRefPubMedGoogle Scholar
  84. 84.
    Jeong BH, Jeon K, Park HY, Moon SM, Kim SY, Lee SY, et al. Peak plasma concentration of azithromycin and treatment responses in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60(10):6076–83.  https://doi.org/10.1128/AAC.00770-16.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lam PK, Griffith DE, Aksamit TR, Ruoss SJ, Garay SM, Daley CL, et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;173(11):1283–9.  https://doi.org/10.1164/rccm.200509-1531OC.CrossRefPubMedGoogle Scholar
  86. 86.
    Koh WJ, Jeong BH, Jeon K, Park HY, Kim SY, Huh HJ, et al. Response to switch from intermittent therapy to daily therapy for refractory nodular Bronchiectatic Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2015;59(8):4994–6.  https://doi.org/10.1128/AAC.00648-15.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kobashi Y, Matsushima T, Oka M. A double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir Med. 2007;101(1):130–8.  https://doi.org/10.1016/j.rmed.2006.04.002.CrossRefPubMedGoogle Scholar
  88. 88.
    Peloquin CA, Berning SE, Nitta AT, Simone PM, Goble M, Huitt GA, et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis. 2004;38(11):1538–44.  https://doi.org/10.1086/420742.CrossRefPubMedGoogle Scholar
  89. 89.
    Jarand J, Davis JP, Cowie RL, Field SK, Fisher DA. Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including Clofazimine and/or rifampin. Chest. 2016;149(5):1285–93.  https://doi.org/10.1378/chest.15-0543.CrossRefPubMedGoogle Scholar
  90. 90.
    Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and effectiveness of Clofazimine for primary and refractory Nontuberculous mycobacterial infection. Chest. 2017.  https://doi.org/10.1016/j.chest.2017.04.175.CrossRefGoogle Scholar
  91. 91.
    Yang B, Jhun BW, Moon SM, Lee H, Park HY, Jeon K, et al. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2017;61(6).  https://doi.org/10.1128/AAC.02052-16.
  92. 92.
    Griffith DE, Brown-Elliott BA, Langsjoen B, Zhang Y, Pan X, Girard W, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;174(8):928–34.  https://doi.org/10.1164/rccm.200603-450OC.CrossRefPubMedGoogle Scholar
  93. 93.
    Koh WJ, Hong G, Kim SY, Jeong BH, Park HY, Jeon K, et al. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin-containing regimen. Antimicrob Agents Chemother. 2013;57(5):2281–5.  https://doi.org/10.1128/AAC.02281-12.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Brown-Elliott BA, Philley JV, Griffith DE, Thakkar F, Wallace RJ Jr. In vitro susceptibility testing of Bedaquiline against Mycobacterium avium complex. Antimicrob Agents Chemother. 2017;61(2).  https://doi.org/10.1128/AAC.01798-16.
  95. 95.
    Diacon AH, Pym A, Grobusch MP, de los Rios JM, Gotuzzo E, Vasilyeva I, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371(8):723–32.  https://doi.org/10.1056/NEJMoa1313865.CrossRefPubMedGoogle Scholar
  96. 96.
    Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, et al. Preliminary results of Bedaquiline as salvage therapy for patients with Nontuberculous mycobacterial lung disease. Chest. 2015;148(2):499–506.  https://doi.org/10.1378/chest.14-2764.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Svensson EM, Murray S, Karlsson MO, Dooley KE. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother. 2015;70(4):1106–14.  https://doi.org/10.1093/jac/dku504. CrossRefPubMedGoogle Scholar
  98. 98.
    Brown-Elliott BA, Crist CJ, Mann LB, Wilson RW, Wallace RJ Jr. In vitro activity of linezolid against slowly growing nontuberculous mycobacteria. Antimicrob Agents Chemother. 2003;47(5):1736–8.CrossRefGoogle Scholar
  99. 99.
    Winthrop KL, Ku JH, Marras TK, Griffith DE, Daley CL, Olivier KN, et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J. 2015;45(4):1177–9.  https://doi.org/10.1183/09031936.00169114.CrossRefPubMedGoogle Scholar
  100. 100.
    Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of Tedizolid against Nontuberculous mycobacteria. J Clin Microbiol. 2017;55(6):1747–54.  https://doi.org/10.1128/JCM.00274-17.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Olivier KN, Shaw PA, Glaser TS, Bhattacharyya D, Fleshner M, Brewer CC, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc. 2014;11(1):30–5.  https://doi.org/10.1513/AnnalsATS.201307-231OC.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex. Am J Respir and Crit Care Med, In Press, 2018.Google Scholar
  103. 103.
    Mitchell JD. Surgical approach to pulmonary nontuberculous mycobacterial infections. Clin Chest Med. 2015;36(1):117–22.  https://doi.org/10.1016/j.ccm.2014.11.004.CrossRefPubMedGoogle Scholar
  104. 104.
    Watanabe M, Hasegawa N, Ishizaka A, Asakura K, Izumi Y, Eguchi K, et al. Early pulmonary resection for Mycobacterium avium complex lung disease treated with macrolides and quinolones. Ann Thorac Surg. 2006;81(6):2026–30.CrossRefGoogle Scholar
  105. 105.
    Koh WJ, Kim YH, Kwon OJ, Choi YS, Kim K, Shim YM, et al. Surgical treatment of pulmonary diseases due to nontuberculous mycobacteria. J Korean Med Sci. 2008;23(3):397–401.  https://doi.org/10.3346/jkms.2008.23.3.397.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Pomerantz M. Anatomic lung resection for nontuberculous mycobacterial disease. Ann Thorac Surg. 2008;85(6):1887–92.; discussion 1892-3.  https://doi.org/10.1016/j.athoracsur.2008.02.041.CrossRefPubMedGoogle Scholar
  107. 107.
    Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardiothorac Surg. 2011;40(3):671–5.  https://doi.org/10.1016/j.ejcts.2010.12.028.CrossRefPubMedGoogle Scholar
  108. 108.
    Morimoto K, Namkoong H, Hasegawa N, Nakagawa T, Morino E, Shiraishi Y, et al. Macrolide-resistant Mycobacterium avium complex lung disease: analysis of 102 consecutive cases. Ann Am Thorac Soc. 2016;13(11):1904–11.  https://doi.org/10.1513/AnnalsATS.201604-246OC.CrossRefPubMedGoogle Scholar
  109. 109.
    Moon SM, Park HY, Kim SY, Jhun BW, Lee H, Jeon K, et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60(11):6758–65.  https://doi.org/10.1128/AAC.01240-16.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Bermudez LE, Nash K, Petrofsky M, Young LS, Inderlied CB. Clarithromycin-resistant mycobacterium avium is still susceptible to treatment with clarithromycin and is virulent in mice. Antimicrob Agents Chemother. 2000;44(10):2619–22.CrossRefGoogle Scholar
  111. 111.
    Lee G, Lee KS, Moon JW, Koh WJ, Jeong BH, Jeong YJ, et al. Nodular bronchiectatic Mycobacterium avium complex pulmonary disease. Natural course on serial computed tomographic scans. Ann Am Thorac Soc. 2013;10(4):299–306.  https://doi.org/10.1513/AnnalsATS.201303-062OC.CrossRefPubMedGoogle Scholar
  112. 112.
    Kotilainen H, Valtonen V, Tukiainen P, Poussa T, Eskola J, Jarvinen A. Prognostic value of American Thoracic Society criteria for non-tuberculous mycobacterial disease: a retrospective analysis of 120 cases with four years of follow-up. Scand J Infect Dis. 2013;45(3):194–202.  https://doi.org/10.3109/00365548.2012.722227.CrossRefPubMedGoogle Scholar
  113. 113.
    Marras TK, Campitelli MA, Lu H, Chung H, Brode SK, Marchand-Austin A, et al. Pulmonary Nontuberculous mycobacteria-associated deaths, Ontario, Canada, 2001-2013. Emerg Infect Dis. 2017;23(3):468–76.  https://doi.org/10.3201/eid2303.161927. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Andrejak C, Thomsen VO, Johansen IS, Riis A, Benfield TL, Duhaut P, et al. Nontuberculous pulmonary mycobacteriosis in Denmark: incidence and prognostic factors. Am J Respir Crit Care Med. 2010;181(5):514–21.  https://doi.org/10.1164/rccm.200905-0778OC.CrossRefPubMedGoogle Scholar
  115. 115.
    Gochi M, Takayanagi N, Kanauchi T, Ishiguro T, Yanagisawa T, Sugita Y. Retrospective study of the predictors of mortality and radiographic deterioration in 782 patients with nodular/bronchiectatic Mycobacterium avium complex lung disease. BMJ Open. 2015;5(8):e008058.  https://doi.org/10.1136/bmjopen-2015-008058. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Fleshner M, Olivier KN, Shaw PA, Adjemian J, Strollo S, Claypool RJ, et al. Mortality among patients with pulmonary non-tuberculous mycobacteria disease. Int J Tuberc Lung Dis. 2016;20(5):582–7.  https://doi.org/10.5588/ijtld.15.0807. CrossRefPubMedGoogle Scholar
  117. 117.
    Horsburgh CR Jr. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med. 1991;324(19):1332–8.  https://doi.org/10.1056/NEJM199105093241906. CrossRefPubMedGoogle Scholar
  118. 118.
    Horsburgh CR Jr, Havlik JA, Ellis DA, Kennedy E, Fann SA, Dubois RE, et al. Survival of patients with acquired immune deficiency syndrome and disseminated Mycobacterium avium complex infection with and without antimycobacterial chemotherapy. Am Rev Respir Dis. 1991;144(3 Pt 1):557–9.  https://doi.org/10.1164/ajrccm/144.3_Pt_1.557. CrossRefPubMedGoogle Scholar
  119. 119.
    Torriani FJ, McCutchan JA, Bozzette SA, Grafe MR, Havlir DV. Autopsy findings in AIDS patients with Mycobacterium avium complex bacteremia. J Infect Dis. 1994;170(6):1601–5.CrossRefGoogle Scholar
  120. 120.
    Ward TT, Rimland D, Kauffman C, Huycke M, Evans TG, Heifets L. Randomized, open-label trial of azithromycin plus ethambutol vs. clarithromycin plus ethambutol as therapy for Mycobacterium avium complex bacteremia in patients with human immunodeficiency virus infection. Veterans affairs HIV research consortium. Clin Infect Dis. 1998;27(5):1278–85.CrossRefGoogle Scholar
  121. 121.
    Dunne M, Fessel J, Kumar P, Dickenson G, Keiser P, Boulos M, et al. A randomized, double-blind trial comparing azithromycin and clarithromycin in the treatment of disseminated Mycobacterium avium infection in patients with human immunodeficiency virus. Clin Infect Dis. 2000;31(5):1245–52.  https://doi.org/10.1086/317468.CrossRefPubMedGoogle Scholar
  122. 122.
    Cohn DL, Fisher EJ, Peng GT, Hodges JS, Chesnut J, Child CC, et al. A prospective randomized trial of four three-drug regimens in the treatment of disseminated Mycobacterium avium complex disease in AIDS patients: excess mortality associated with high-dose clarithromycin. Terry Beirn community programs for clinical research on AIDS. Clin Infect Dis. 1999;29(1):125–33.  https://doi.org/10.1086/520141. CrossRefPubMedGoogle Scholar
  123. 123.
    Dube MP, Sattler FR, Torriani FJ, See D, Havlir DV, Kemper CA, et al. A randomized evaluation of ethambutol for prevention of relapse and drug resistance during treatment of Mycobacterium avium complex bacteremia with clarithromycin-based combination therapy. California collaborative treatment group. J Infect Dis. 1997;176(5):1225–32.CrossRefGoogle Scholar
  124. 124.
    Benson CA, Williams PL, Currier JS, Holland F, Mahon LF, MacGregor RR, et al. A prospective, randomized trial examining the efficacy and safety of clarithromycin in combination with ethambutol, rifabutin, or both for the treatment of disseminated Mycobacterium avium complex disease in persons with acquired immunodeficiency syndrome. Clin Infect Dis. 2003;37(9):1234–43.  https://doi.org/10.1086/378807. CrossRefPubMedGoogle Scholar
  125. 125.
    Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Disseminated Mycobacterium avium complex disease. In: Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. AIDSinfo. 2013. https://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. Accessed 19 June 2017.
  126. 126.
    Chaisson RE, Keiser P, Pierce M, Fessel WJ, Ruskin J, Lahart C, et al. Clarithromycin and ethambutol with or without clofazimine for the treatment of bacteremic Mycobacterium avium complex disease in patients with HIV infection. AIDS. 1997;11(3):311–7.CrossRefGoogle Scholar
  127. 127.
    Karakousis PC, Moore RD, Chaisson RE. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect Dis. 2004;4(9):557–65.  https://doi.org/10.1016/S1473-3099(04)01130-2. CrossRefPubMedGoogle Scholar
  128. 128.
    Aberg JA, Yajko DM, Jacobson MA. Eradication of AIDS-related disseminated mycobacterium avium complex infection after 12 months of antimycobacterial therapy combined with highly active antiretroviral therapy. J Infect Dis. 1998;178(5):1446–9.CrossRefGoogle Scholar
  129. 129.
    Pierce M, Crampton S, Henry D, Heifets L, LaMarca A, Montecalvo M, et al. A randomized trial of clarithromycin as prophylaxis against disseminated Mycobacterium avium complex infection in patients with advanced acquired immunodeficiency syndrome. N Engl J Med. 1996;335(6):384–91.  https://doi.org/10.1056/NEJM199608083350603.CrossRefPubMedGoogle Scholar
  130. 130.
    Havlir DV, Dube MP, Sattler FR, Forthal DN, Kemper CA, Dunne MW, et al. Prophylaxis against disseminated Mycobacterium avium complex with weekly azithromycin, daily rifabutin, or both. California collaborative treatment group. N Engl J Med. 1996;335(6):392–8.  https://doi.org/10.1056/NEJM199608083350604.CrossRefPubMedGoogle Scholar
  131. 131.
    Benson CA, Williams PL, Cohn DL, Becker S, Hojczyk P, Nevin T, et al. Clarithromycin or rifabutin alone or in combination for primary prophylaxis of Mycobacterium avium complex disease in patients with AIDS: a randomized, double-blind, placebo-controlled trial. The AIDS Clinical Trials Group 196/Terry Beirn community programs for clinical research on AIDS 009 protocol team. J Infect Dis. 2000;181(4):1289–97.  https://doi.org/10.1086/315380.CrossRefPubMedGoogle Scholar
  132. 132.
    El-Sadr WM, Burman WJ, Grant LB, Matts JP, Hafner R, Crane L, et al. Discontinuation of prophylaxis against Mycobacterium avium complex disease in HIV-infected patients who have a response to antiretroviral therapy. Terry Beirn community programs for clinical research on AIDS. N Engl J Med. 2000;342(15):1085–92.  https://doi.org/10.1056/NEJM200004133421503.CrossRefPubMedGoogle Scholar
  133. 133.
    Lindeboom JA, Kuijper EJ, Bruijnesteijn van Coppenraet ES, Lindeboom R, Prins JM. Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial. Clin Infect Dis. 2007;44(8):1057–64.  https://doi.org/10.1086/512675.CrossRefPubMedGoogle Scholar
  134. 134.
    Rahal A, Abela A, Arcand PH, Quintal MC, Lebel MH, Tapiero BF. Nontuberculous mycobacterial adenitis of the head and neck in children: experience from a tertiary care pediatric center. Laryngoscope. 2001;111(10):1791–6.  https://doi.org/10.1097/00005537-200110000-00024. CrossRefPubMedGoogle Scholar
  135. 135.
    Panesar J, Higgins K, Daya H, Forte V, Allen U. Nontuberculous mycobacterial cervical adenitis: a ten-year retrospective review. Laryngoscope. 2003;113(1):149–54.  https://doi.org/10.1097/00005537-200301000-00028.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Mycobacterial and Respiratory InfectionsNational Jewish HealthDenverUSA

Personalised recommendations