The Climate of Cuatro Ciénegas Basin: Drivers and Temporal Patterns

  • Cristina Montiel-González
  • Francisco Bautista
  • Carmen Delgado
  • Felipe García-OlivaEmail author
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)


The Cuatro Ciénegas Basin (CCB) is considered an important biodiversity hot spot despite its arid climate conditions. The valley is located in the southern part of the Chihuahuan desert at 26° 50′ 41″ N and is strongly affected by a divergent wind zone with high pressure at 30° N. The average annual solar radiation is 5.28 kWh m−2 day−1, exhibiting a seasonal pattern with the highest values occurring in the summer months. The annual mean temperature is 21.9 °C. The average temperatures of the coldest month (January) is 12.9 °C while the hottest month (July) is 28.8 °C, resulting in a seasonal monthly pattern similar to that of solar radiation. The temperatures show a variation over the years with an apparent increase in the frequency of extreme cold events during the winter and extreme hot events during the summer. These results suggest that the winters are becoming colder while the summer months are becoming warmer. This annual variability is associated with the North Atlantic Oscillation (NAO). The annual averages of potential evapotranspiration and annual precipitation are 2602 mm year−1 and 211 mm year−1, respectively, suggesting that the average annual rainfall only represents only 8% of the annual water for evapotranspiration demand. The annual precipitation also shows high variability over the years as a consequence of El Niño, NAO, and tropical cyclones. The models under global climate change predict that the climate of CCB has a trend of becoming drier and warmer with a high frequency of extreme climatic events, resulting in a more extreme climate.



The authors thank the Servicio Meteorológico Nacional of México (SMN) and the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) for providing meteorological data. The authors thank Skiu (Scientific Knowledge In Use for granting a Clic-MD software license for data analysis.


  1. Ahrens CD (2013) Meteorology today: an introduction to weather, climate, and the environment. Thomson/Brooks/Cole, BelmontGoogle Scholar
  2. Archer SR, Predick KI (2008) Climate change and ecosystems of the southwestern United States. Rangelands 30:23–28CrossRefGoogle Scholar
  3. Bautista F, Pacheco A, Bautista-Hernández DA (2016) Climate change analysis with monthly data (Clic-MD). Skiu. México, CDMX, 57 pGoogle Scholar
  4. Bonan G (2015) Ecological climatology: concepts and applications. Cambridge University Press, CambridgeGoogle Scholar
  5. CONAGUA (2017) Impactos del ENOS en México. Accessed Oct 2017
  6. FAO (2007) Carbon sequestration in dryland soils. World Soil Resources Reports. No. 102. World Soil Resources Reports RomeGoogle Scholar
  7. García E (1981) Modificación al sistema de clasificación climática de Köppen. Instituto de Geografía. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  8. IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation a special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–19Google Scholar
  9. Magaña V, Pérez JL, Conde C (1998) El fenómeno de El Niño y la oscilación del sur. Sus impactos en México. Ciencias 51:14–18Google Scholar
  10. Montiel C et al (2017) The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert. Peer J 5:e4007. CrossRefGoogle Scholar
  11. NASA (2018) Surface meteorology and solar energy. Accessed Feb 2018
  12. Rzedowski J (2006) Vegetación de México. Limusa, Mexico CityGoogle Scholar
  13. Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT, Dunstone N, Eade R, Fereday D, Folland CK, Gordon M, Hermanson L, Knight JR, Lea DJ, MacLachlan C, Maidens A, Martin M, Peterson AK, Smith D, Vellinga M, Wallace E, Waters J, Williams A (2014) Skillful long range prediction of European and north American winters. Geophys Res Lett 41:2514–2519CrossRefGoogle Scholar
  14. SEMARNAT-INECC (2016) Mexico’s climate change mid-century strategy. Ministry of Environment and Natural Resources (SEMARNAT) and National Institute of Ecology and Climate Change (INECC), Mexico CityGoogle Scholar
  15. Souza V, Siefert JL, Escalante AE, Elser JJ, Eguiarte LE (2011) The Cuatro Ciénegas Basin in Coahuila, Mexico: an Astrobiological Precambrian Park. Astrobiology 12:641–647CrossRefGoogle Scholar
  16. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. UNEP (1997) In: Middleton N, Thomas DSG (eds) World atlas of desertification. UNEP: LondonGoogle Scholar
  18. Vose RS, Applequist S, Bourassa MA, Pryor SC, Barthelmie RJ, Blanton B, Bromirski PD, Brooks HE, DeGaetano AT, Dole RM, Easterling DR, Jensen RE, Karl TR, Katz RW, Klink K, Kruk MC, Kunkel KE, MacCracken MC, Peterson TC, Shein K, Thomas BR, Walsh JE, Wang XL, Wehner MF, Wuebbles DJ, Young RS (2014) Monitoring and understanding changes in extremes: extratropical storms, winds, and waves. Bull Am Meteorol Soc 95:377–386CrossRefGoogle Scholar
  19. Williams M (2014) Climate change in deserts: past, present and future. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Montiel-González
    • 1
  • Francisco Bautista
    • 2
  • Carmen Delgado
    • 3
  • Felipe García-Oliva
    • 1
    Email author
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Centro de Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Laboratorio Universitario de Geofísica AmbientalInstituto de Geofísica. Universidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations