Advertisement

General Characteristics of the Methods of Thermolysis of Metal Compounds

  • Igor E. Uflyand
  • Gulzhian I. Dzhardimalieva
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The study of thermolysis of metal-containing compounds can be carried out in closed or open systems both under isothermal and non-isothermal conditions using external and internal heating sources. Depending on the tasks, different approaches allow controlling the degree of conversion and determining the choice of equipment for the experimental study of thermolysis of compounds. Weight (thermogravimetry, TG) or volumetric (volumetry) methods are the most common. Although the development of experimental facilities for the study of thermolysis kinetics began in the first quarter of the twentieth century, the current state of TA can be characterized as diverse and dynamic. In particular, improved tools, methods, and applications are constantly appearing on the market and in scientific research. It should be noted that practically any compound in a solid, semi-solid, or liquid state can be analyzed and characterized by thermal analysis (TA) methods. In recent years, integrated (synchronous) devices have begun to appear that combine several methods for analyzing the conversion of matter with automation and using the capabilities of modern computers in a single approach. In this chapter, we will consider the features of the basic methods used to study the kinetics of thermolysis of metal-containing compounds.

References

  1. 1.
    A.D. Pomogailo, G.I. Dzhardimalieva, Nanostructured Materials Preparation via Condensation Ways (Springer, Dordrecht, 2014)CrossRefGoogle Scholar
  2. 2.
    A.D. Pomogailo, G.I. Dzhardimalieva, Metallopolymeric Hybrid Nanocomposites (Nauka, Moscow, 2015)Google Scholar
  3. 3.
    J.D. Menczel, R.B. Prime (eds.), Thermal Analysis of Polymers. Fundamentals and Applications (Wiley, London, 2009)Google Scholar
  4. 4.
    D. Emadi, L.V. Whiting, S. Nafisi, R. Ghomashchi, J. Therm. Anal. Calorim. 81, 235 (2005)CrossRefGoogle Scholar
  5. 5.
    S. Farahany, A. Ourdjini, M.H. Idris, J. Therm. Anal. Calorim. 109, 105 (2012)CrossRefGoogle Scholar
  6. 6.
    P. Gabbott (ed.), Principles and Applications of Thermal Analysis (Wiley-Blackwell, 2007)Google Scholar
  7. 7.
    J. Šesták, P. Hubík, J.J. Mareš (eds.), Thermal Physics and Thermal Analysis. From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials (Springer, Berlin, 2017)Google Scholar
  8. 8.
    M.E. Brown (ed.), Introduction to Thermal Analysis: Techniques and Applications (Kluwer Academic Publishers, NY, Boston, Dordrecht, London, Moscow, 2001)Google Scholar
  9. 9.
    S. Gaisford, V. Kett, P. Haines (eds.), Principles of Thermal Analysis and Calorimetry, 2nd edn. (RSC, Cambridge, 2016)Google Scholar
  10. 10.
    P.J. Haines, Thermal Methods of Analysis (Blackie Academic and Professional, London, 1995)CrossRefGoogle Scholar
  11. 11.
    S.Z.D. Cheng, C.Y. Li, B.H. Calhoun, L. Zhu, W.W. Zhou, Thermochim. Acta 355, 59 (2000)CrossRefGoogle Scholar
  12. 12.
    D.Q.M. Craig, M. Reading, Thermal Analysis of Pharmaceuticals (CRC Press, Boca Raton, 2007)Google Scholar
  13. 13.
    C. Kuo-Chung, Y. Cheng-Bin, G. Wenjeng, W. Sea-Fue, T.H. Chuang, Y.H. Lin, Carbohydrate Polym. 87, 1119 (2012)CrossRefGoogle Scholar
  14. 14.
    P. Phansi, K. Danchana, V. Cerdà, TrAC Trends. Anal. Chem. 97, 316 (2017)Google Scholar
  15. 15.
    B. Wunderlich, Thermal Analysis of Polymeric Materials (Springer, 2005)Google Scholar
  16. 16.
    S. Loganathan, R.B. Valapa, R.K. Mishra, G. Pugazhenthi, S. Thomas, Thermogravimetric Analysis for Characterization of Nanomaterials, in Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, eds. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, 2017), pp. 67–108CrossRefGoogle Scholar
  17. 17.
    R. Sah, S.K. Dutta, Trans. Indian Inst. Met. 64, 583 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Materazzi, R. Risoluti, Appl. Spectrosc. Rev. 49, 635 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Materazzi, S. Vecchio, Appl. Spectrosc. Rev. 48, 654 (2013); 46, 261 (2011); 45, 241 (2010)Google Scholar
  20. 20.
    S. Materazzi, A. Gentili, R. Curini, Talanta 69, 781 (2006)PubMedCrossRefGoogle Scholar
  21. 21.
    A.D. Pomogailo, A.S. Burlov, N.D. Golubeva, L.A. Petrova, S.A. Mashchenko, S.I. Pomogailo, G.I. Dzhardimalieva, A.D. Garnovskii, Inorg. Mater. 47, 876 (2011)CrossRefGoogle Scholar
  22. 22.
    A.D. Pomogailo, G.I. Dzhardimalieva, S.I. Pomogailo, N.D. Golubeva, G.V. Shilov, E.A. Dzhavadyan, A.S. Burlov, S.A. Mashchenko, D.A. Garnovskii, Russ. Chem. Bull. 65, 139 (2016)CrossRefGoogle Scholar
  23. 23.
    B.A. Komarov, A.T. Kapasharov, E.A. Dzhavadyan, V.A. Lesnichaya, G.I. Dzhardimalieva, A.S. Burlov, A.I. Uraev, S.A. Mashchenko, D.A. Garnovskii, A.D. Pomogailo, Russ. Chem. Bull. 64, 936 (2015)CrossRefGoogle Scholar
  24. 24.
    V.A. Logvinenko, F. Paulik, I. Paulik, Kvaziravnovesnaya Termogravimetriya v Sovremennoi Neorganicheskoi Khimii (Quasi-equilibrium Thermogravimetry in Modern Inorganic Chemistry) (Nauka, Novosibirsk, 1989)Google Scholar
  25. 25.
    J. Paulik, F. Paulik, Therm. Acta 100, 23 (1986)CrossRefGoogle Scholar
  26. 26.
    G. Hohne, W.F. Hemminger, H.J. Flammersheim, Differential Scanning Calorimetry, 2nd edn. (Springer, NY, 2003)CrossRefGoogle Scholar
  27. 27.
    P. Gill, T.T. Moghadam, B. Ranjbar, J. Biomol. Techn. 21, 167 (2010)Google Scholar
  28. 28.
    S.L. Simon, Thermochim. Acta 374, 55 (2001)CrossRefGoogle Scholar
  29. 29.
    S. Yu, S. Wang, M. Lu, L. Zuo, Front. Mech. Eng. (2017).  https://doi.org/10.1007/s11465-017-0451-0CrossRefGoogle Scholar
  30. 30.
    L. Zapała, M. Kosínska, E. Wóznicka, Ł. Byczýnski, W. Zapała, J. Kalembkiewicz, J. Anal. Appl. Pyrolysis 123, 1 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Papadopoulos, B. Cristóvão, W. Ferenc, A. Hatzidimitriou, S. Vecchio Ciprioti, R. Risoluti, M. Lalia-Kantouri, J. Therm. Anal. Calorim. 123, 717 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Materazzi, G. Gullifa, M.A. Fabiano, P. Frati, A. Santurro, M. Scopetti, V. Fineschi, R. Risoluti, J. Therm. Anal. Calorim. 130, 549 (2017)CrossRefGoogle Scholar
  33. 33.
    S.V. Pol, V.S. Pol, A. Gedanken, Chem. Eur. J. 10, 4467 (2004)PubMedCrossRefGoogle Scholar
  34. 34.
    V.G. Pol, S.V. Pol, A. Gedanken, J. Phys. Chem. C 112, 6627 (2008)CrossRefGoogle Scholar
  35. 35.
    S. Hoffmann, M. Schmidt, S. Scharsach, R. Kniep, Thermochim. Acta 527, 204 (2012)CrossRefGoogle Scholar
  36. 36.
    T. Arii, Y. Sawada, K. Iizumi, K. Kudaka, S. Seki, Thermochim. Acta 352–353, 53 (2000)CrossRefGoogle Scholar
  37. 37.
    S. Materazzi, R. Risoluti, A. Napoli, Thermochim. Acta 606, 90 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Materazzi, J. Finamore, R. Risoluti, A. Napoli, S. D’Arienzo, Int. J. Mass Spectrom. 365–366, 372 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Materazzi, J. Finamore, R. Risoluti, A. Napoli, Microchem. J. 115, 27 (2014)CrossRefGoogle Scholar
  40. 40.
    R. Risoluti, G. Gullifa, M.A. Fabiano, S. Materazzi, Russ. J. Gen. Chem. 85, 2374 (2015)CrossRefGoogle Scholar
  41. 41.
    Q. Guo, X. Zhang, C. Li, X. Liu, J. Li, J. Hazard. Mater. 209–210, 443 (2012)PubMedCrossRefGoogle Scholar
  42. 42.
    J. Madarasz, S. Kaneko, M. Okuya, G. Pokol, Thermochim. Acta 489, 37 (2009)CrossRefGoogle Scholar
  43. 43.
    R. Risoluti, M.A. Fabiano, G. Gullifa, L.W. Wo, S. Materazzi, Russ. J. Gen. Chem. 87, 564 (2017)CrossRefGoogle Scholar
  44. 44.
    S. Materazzi, C. Foti, F. Crea, R. Risoluti, J. Finamore, Thermochim. Acta 580, 7 (2014)CrossRefGoogle Scholar
  45. 45.
    R. Risoluti, G. Gullifa, M.A. Fabiano, L.W. Wo, S. Materazzi, Russ. J. Gen. Chem. 87, 300 (2017)CrossRefGoogle Scholar
  46. 46.
    A. Napoli, D. Aiello, G. Aiello, M.S. Cappello, L. Di Donna, F. Mazzotti, S. Materazzi, G. Sindona, J. Proteome Res. 13, 2856 (2014)PubMedCrossRefGoogle Scholar
  47. 47.
    S. Materazzi, R. Risoluti, J. Finamore, A. Napoli, Microchem. J. 115, 27 (2014)CrossRefGoogle Scholar
  48. 48.
    Y. Liu, V. Kravtsov, R.D. Walsh, P. Poddar, H. Srikanthc, M. Eddaoudi, Chem. Commun. 2806 (2004)Google Scholar
  49. 49.
    S. Materazzi, S. Vecchio, S. De Angelis, Curtis. J. Therm. Anal. Calorim. 112, 529 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Materazzi, A. Napoli, J. Finamore, R. Risoluti, S. D’Arienzo, Int. J. Mass Spectrom. 365/366, 372 (2014)Google Scholar
  51. 51.
    V. Migliorati, P. Ballirano, L. Gontrani, S. Materazzi, F. Ceccacci, R. Caminiti, J. Phys. Chem. B 117, 7806 (2013)PubMedCrossRefGoogle Scholar
  52. 52.
    S. Materazzi, S. De Angelis Curtis, S. Vecchio Ciprioti, R. Risoluti, J. Finamore, J. Therm. Anal. Cal. 116, 93 (2014)Google Scholar
  53. 53.
    G. Crea, C. Foti, O. Giuffrè, S. Materazzi, New J. Chem. 38, 3973 (2014)CrossRefGoogle Scholar
  54. 54.
    S. Vecchio, S. Materazzi, L.W. Wo, S. De Angelis, Curtis. Thermochim. Acta 568, 31 (2013)CrossRefGoogle Scholar
  55. 55.
    S.M. Alshehri, A. Al-Fawaz, T. Ahamad, J. Anal. Appl. Pyrolysis 101, 215 (2013)CrossRefGoogle Scholar
  56. 56.
    A.S. Shteinberg, Fast Reactions in Energetic Materials, High-Temperature Decomposition of Rocket Propellants and Explosives (Springer, Berlin, Heidelberg, 2008)Google Scholar
  57. 57.
    J.Q. Sun, X.P. Shen, L.J. Guo, K.M. Chen, Q. Liu, Phys. E. Low Dimens. Syst. Nanostr. 41, 1527 (2009)CrossRefGoogle Scholar
  58. 58.
    J.Q. Sun, X.P. Shen, K.M. Chen, Q. Liu, W. Liu, Solid. State Comm. 147, 501 (2008)CrossRefGoogle Scholar
  59. 59.
    M. Bowtell, Adhes. Age 40, 62 (1997)Google Scholar
  60. 60.
    B.V. L’vov, Thermal Decomposition of Solids and Melts: New Thermochemical Approach to the Mechanism, Kinetics and Methodology (Springer, 2007)CrossRefGoogle Scholar
  61. 61.
    G.P. Shveikin, I.V. Nikolaenko, Theor. Found. Chem. Eng. 43, 553 (2009)CrossRefGoogle Scholar
  62. 62.
    F. Antolini, A. Ghezelbash, C. Esposito, E. Trave, L. Tapfer, B.A. Korgel, Mater. Lett. 60, 1095 (2006)CrossRefGoogle Scholar
  63. 63.
    Y.C. Kang, S.B. Park, I.W. Lenggoro, K. Okuyama, J. Mater. Res. 14, 2611 (1999)CrossRefGoogle Scholar
  64. 64.
    I.W. Lenggoro, T. Hata, F. Iskandar, J. Mater. Res. 15, 733 (2000)CrossRefGoogle Scholar
  65. 65.
    H.K. Kammler, L. Mädler, S.E. Pratsinis, Chem. Eng. Technol. 24, 583 (2001)CrossRefGoogle Scholar
  66. 66.
    E.K. Athanassiou, R.N. Grass, W.J. Stark, Nanotechnology 17, 1668 (2006)PubMedCrossRefGoogle Scholar
  67. 67.
    M.T. Swihart, Curr. Opin. Colloid. Interf. Sci. 8, 127 (2003)CrossRefGoogle Scholar
  68. 68.
    C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Adv. Mater. 23, 599 (2011)PubMedCrossRefGoogle Scholar
  69. 69.
    C.-K. Tsung, J. Fan, N. Zheng, Q. Shi, A.J. Forman, J. Wang, G.D. Stucky, Angew. Chem. Int. Ed. 47, 8682 (2008)CrossRefGoogle Scholar
  70. 70.
    T.A. Ostomel, Q. Shi, C.-K. Tsung, H. Liang, G.D. Stucky, Small 2, 1261 (2006)PubMedCrossRefGoogle Scholar
  71. 71.
    L. Li, C.-K. Tsung, Z. Yang, G.D. Stucky, L.D. Sun, J.F. Wang, C.H. Yan, Adv. Mater. 20, 903 (2008)CrossRefGoogle Scholar
  72. 72.
    Y. Lu, H. Fan, A. Stump, T.L. Ward, T. Rieker, C.J. Brinker, Nature 398, 223 (1999)CrossRefGoogle Scholar
  73. 73.
    A.K.P. Mann, S.E. Skrabalak, Chem. Mater. 23, 1017 (2011)CrossRefGoogle Scholar
  74. 74.
    S. Areva, C. Boissiere, D. Grosso, T. Asakawa, C. Sanchez, M. Linden, Chem. Commun. 1630 (2004)Google Scholar
  75. 75.
    J.B. Pang, J.N. Stuecker, Y.B. Jiang, A.J. Bhakta, E.D. Branson, P. Li, J. Cesarano, D. Sutton, P. Calvert, C.J. Brinker, Small 4, 982 (2008)PubMedCrossRefGoogle Scholar
  76. 76.
    D.S. Jung, S.B. Park, Y.C. Kang, Korean J. Chem. Eng. 27, 1621 (2010)CrossRefGoogle Scholar
  77. 77.
    J.-C. Lin, J.W. Gentry, J. Aerosol Sci. 31, 797 (2000)CrossRefGoogle Scholar
  78. 78.
    N. Reuge, B. Caussat, Comput. Chem. Eng. 31, 1088 (2007)CrossRefGoogle Scholar
  79. 79.
    I.W. Lenggoro, Y. Itoh, K. Okuyama, T.O. Kim, J. Mater. Res. 19, 3534 (2004)CrossRefGoogle Scholar
  80. 80.
    W.-N. Wang, A. Purwanto, K. Okuyama, in Handbook of Atomization and Sprays, ed. by N. Ashgriz (Springer Science Business Media, LLC, 2011)Google Scholar
  81. 81.
    Y.C. Kang, Y.S. Chung, S.B. Park, J. Am. Ceram. Soc. 82, 2056 (1999)CrossRefGoogle Scholar
  82. 82.
    K. Okuyama, I.W. Lenggoro, Chem. Eng. Sci. 58, 537 (2003)CrossRefGoogle Scholar
  83. 83.
    W.-N. Wang, I.W. Lenggoro, Y. Terashi, T.O. Kim, K. Okuyama, Mat. Sci. Eng. B 123, 194 (2005)CrossRefGoogle Scholar
  84. 84.
    Y.C. Kang, S.B. Park, Mater. Res. Bull. 35, 1143 (2000)CrossRefGoogle Scholar
  85. 85.
    W.-N. Wang, I.W. Lenggoro, Y. Terashi, Y.C. Wang, K. Okuyama, J. Mater. Res. 20, 2873 (2005)CrossRefGoogle Scholar
  86. 86.
    I.W. Lenggoro, Y. Itoh, N. Iida, K. Okuyama, Mater. Res. Bull. 38, 1819 (2003)CrossRefGoogle Scholar
  87. 87.
    R.M. Laine, T. Hinklin, G. Williams, S.C. Rand, Mater. Sci. Forum 343–346, 500 (2000)CrossRefGoogle Scholar
  88. 88.
    A. Camenzind, R. Strobel, S.E. Pratsinis, Chem. Phys. Lett. 415, 193 (2005)CrossRefGoogle Scholar
  89. 89.
    A. Camenzind, R. Strobel, F. Krumeich, S.E. Pratsinis, Adv. Powder Technol. 18, 5 (2007)CrossRefGoogle Scholar
  90. 90.
    D. Dosev, B. Guo, I.M. Kennedy, J. Aerosol Sci. 37, 402 (2006)CrossRefGoogle Scholar
  91. 91.
    T.R. Hinklin, J. Azurdia, M. Kim, J.C. Marchal, S. Kumar, R.M. Laine, Adv. Mater. 20, 1270 (2008)CrossRefGoogle Scholar
  92. 92.
    P. Milani, L.G. Bettini, Nano- and Micromanufacturing with Nanoparticles Produced in the Gas Phase: An Emerging Tool for Functional and Length-Scale Integration, in Gas-Phase Synthesis of Nanoparticles, ed. by Y. Huttel (Wiley, Weinheim, 2017)CrossRefGoogle Scholar
  93. 93.
    G. Solero, Nanoscience and Nanotechnology 7, 21 (2017)Google Scholar
  94. 94.
    R. Strobel, S.E. Pratsinis, J. Mater. Chem. 17, 4743 (2007)CrossRefGoogle Scholar
  95. 95.
    W.Y. Teoh, R. Amal, L. Mädler, Nanoscale 2, 1324 (2010)PubMedCrossRefGoogle Scholar
  96. 96.
    G.A. Kelesidis, E. Goudeli, S.E. Pratsinis, Proc. Comb. Inst. 36, 29 (2017)CrossRefGoogle Scholar
  97. 97.
    H.H. Nersisyan, J.H. Lee, J.-R. Ding, K.-S. Kim, K.V. Manukyan, A.S. Mukasyan, Prog. Energy Comb. Sci. 63, 79 (2017)CrossRefGoogle Scholar
  98. 98.
    T. Tani, L. Madler, S.E. Pratsinis, J. Nanopart. Res. 4, 337 (2002)CrossRefGoogle Scholar
  99. 99.
    R. Riedel, A. Gurlo, E. Ionescu, Chem. unserer Zeit 44, 208 (2010)CrossRefGoogle Scholar
  100. 100.
    A. Purwanto, I.W. Lenggoro, H.W. Chang, K. Okuyama, J. Chem. Eng. Jpn 39, 68 (2006)CrossRefGoogle Scholar
  101. 101.
    B. Thiébaut, Platinum Metals Rev. 55, 149 (2011).  https://doi.org/10.1595/147106711X567680CrossRefGoogle Scholar
  102. 102.
    R. Strobel, A. Alfons, S.E. Pratsinis, Adv. Powder Tech. 17, 457 (2006)CrossRefGoogle Scholar
  103. 103.
    K. Wegner, S. Vinati, P. Piseri, A. Antonini, A. Zelioli, E. Barborini, C. Ducati, P. Milani, Nanotechnology 23, 185603 (2012)PubMedCrossRefGoogle Scholar
  104. 104.
    L. Mädler, H.K. Kammler, R. Mueller, S.E. Pratsinis, J. Aerosol Sci. 33, 369 (2002)CrossRefGoogle Scholar
  105. 105.
    A.T. Hinklin, B. Toury, C. Gervais, F. Babonneau, J.J. Gislason, R.W. Morton, R.M. Laine, Chem. Mater. 16, 21 (2004)CrossRefGoogle Scholar
  106. 106.
    M. Kim, T.R. Hinklin, R.M. Laine, Chem. Mater. 20, 5154 (2008)CrossRefGoogle Scholar
  107. 107.
    R. Baranwal, M.P. Villar, R. Garcia, R.M. Laine, J. Am. Ceram. Soc. 84, 951 (2001)CrossRefGoogle Scholar
  108. 108.
    J. Marchal, T. Hinklin, R. Baranwal, T. Johns, R.M. Laine, Chem. Mater. 16, 822 (2004)CrossRefGoogle Scholar
  109. 109.
    M. Szutkowska, J. Mater. Proc. Tech. 153–154, 868 (2004)CrossRefGoogle Scholar
  110. 110.
    Y. Jia, Y. Hotta, K. Sato, K. Watari, J. Am. Ceram. Soc. 89, 1103 (2006)CrossRefGoogle Scholar
  111. 111.
    W.J. Stark, S.E. Pratsinis, Powder Technol. 126, 103 (2002)CrossRefGoogle Scholar
  112. 112.
    D. Hong, Y. Yamada, M. Sheehan, S. Shikano, C.-H. Kuo, M. Tian, C.-K. Tsung, S. Fukuzumi, ACS Sustain. Chem. Eng. 2, 2588 (2014)CrossRefGoogle Scholar
  113. 113.
    G. Benetti, C. Caddeo, C. Melis, G. Ferrini, C. Giannetti, N. Winckelmans, S. Bals, M.J. Van Bael, E. Cavaliere, L. Gavioli, F. Banfi, J. Phys. Chem. C 121, 22434 (2017)CrossRefGoogle Scholar
  114. 114.
    D. Perednis, L.J. Gauckler, J. Electroceram. 14, 103 (2005)CrossRefGoogle Scholar
  115. 115.
    M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311, 4499 (2009)CrossRefGoogle Scholar
  116. 116.
    M.A. Montero, M.R.G. Chialvo, A.C. Chialvo, J. Mater. Chem. 19, 3276 (2009)CrossRefGoogle Scholar
  117. 117.
    U. Alver, T. Kilinc, E. Bacaksiz, S. Nezir, Mater. Chem. Phys. 106, 227 (2007)CrossRefGoogle Scholar
  118. 118.
    H. Zhang, M.T. Swihart, Chem. Mater. 19, 1290 (2007)CrossRefGoogle Scholar
  119. 119.
    S.E. Skrabalak, K.S. Suslick, J. Am. Chem. Soc. 127, 9990 (2005)PubMedCrossRefGoogle Scholar
  120. 120.
    P. Majeric, R. Rudolf, I. Anzel, J. Bogovic, S. Stopic, B. Friedrich, Mater. Technol. 49, 75 (2015)Google Scholar
  121. 121.
    J.J. Hinman, K.S. Suslick, Top. Curr. Chem. (Z) 375, 12 (2017)CrossRefGoogle Scholar
  122. 122.
    D. Mott, J. Yin, M. Engelhard, R. Loukrakpam, P. Chang, G. Miller, I.-T. Bae, N. Chandra Das, C. Wang, J. Luo, C.-J. Zhong, Chem. Mater. 22, 261 (2009)CrossRefGoogle Scholar
  123. 123.
    D. Mott, J. Galkowski, L. Wang, J. Luo, J.C. Zhong, Langmuir 23, 5740 (2007)PubMedCrossRefGoogle Scholar
  124. 124.
    Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Chem. Mater. 21, 1778 (2009)CrossRefGoogle Scholar
  125. 125.
    S.D. Bakrania, T.A. Miller, C. Perez, M.S. Wooldridge, Combust. Flame 148, 76 (2007)CrossRefGoogle Scholar
  126. 126.
    S.D. Bakrania, C. Perez, M.S. Wooldridge, Proc. Combust. Inst. 31, 1797 (2007)CrossRefGoogle Scholar
  127. 127.
    L. Mangolini, E. Thimsen, U. Kortshagen, Nano Lett. 5, 655 (2005)PubMedCrossRefGoogle Scholar
  128. 128.
    E. Thimsen, P. Biswas, AIChE J. 53, 1727 (2005)CrossRefGoogle Scholar
  129. 129.
    E. Thimsen, N. Rastgar, P. Biswas, J. Phys. Chem. 112, 4134 (2005)Google Scholar
  130. 130.
    P. Biswas, E. Thimsen, Aerosol Measurements, 3rd ed. (Wiley-VCH, New York, 2011). (Ch. 33)Google Scholar
  131. 131.
    R. Rudolf, B. Friedrich, S. Stopic, I. Anzel, S. Tomic, M. Colic, J. Biomater. Appl. 26, 595 (2012)PubMedCrossRefGoogle Scholar
  132. 132.
    J. Dokic, R. Rudolf, S. Tomic, S. Stopic, B. Friedrich, B. Budic, I. Anzel, M. Colic, J. Biomed. Nanotechnol. 8, 528 (2012)PubMedCrossRefGoogle Scholar
  133. 133.
    M. Afzal, P.K. Butt, H. Ahmad, J. Therm. Anal. 37, 1015 (1991)CrossRefGoogle Scholar
  134. 134.
    S. Stopic, R. Rudolf, J. Bogovic, P. Majeric, M. Colic, S. Tomic, M. Jenko, B. Friedrich, MTAEC9 47, 557 (2013)Google Scholar
  135. 135.
    S. Stopic, B. Friedrich, H.U. Fritsching, K. Raic, Synthesis of Metallic Nanosized Particles by Ultrasonic Spray Pyrolysis, IME Metallurgische Prozesstechnik and Metallrecycling, RWTH Aachen, Germany, 1st ed (Shaker Verlag, 2015)Google Scholar
  136. 136.
    P. Majeric, D. Jenko, B. Budic, S. Tomic, M. Colic, B. Friedrich, R. Rudolf, Nanosci. Nanotechnol. Lett. 7, 1 (2015)CrossRefGoogle Scholar
  137. 137.
    P. Majeric, B. Friedrich, R. Rudolf, Mater. Technol. 49, 791 (2015)Google Scholar
  138. 138.
    D.M. Dobkin, M.K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003)CrossRefGoogle Scholar
  139. 139.
    K.R. Johnson, P.A. Rodriguez, C.R. Brewer, J.A. Brannaka, Z. Shi, J. Chem. Phys. 146, 052816 (2017)PubMedCrossRefGoogle Scholar
  140. 140.
    R. Gaur, L. Mishra, M.A. Siddiqi, B. Atakan, RSC Adv. 4, 33785 (2014)CrossRefGoogle Scholar
  141. 141.
    J. Jeschke, S. Möckel, M. Korb, T. Rüffer, K. Assim, M. Melzer, G. Herwig, C. Georgi, S.E. Schulz, H. Lang, J. Mater. Chem. C 4, 2319 (2016)CrossRefGoogle Scholar
  142. 142.
    R. Rudolf, P. Majeric, S. Tomic, M. Shariq, U. Fercec, B. Budic, B. Friedrich, D. Vucevic, M. Colic, J. Nanomater. (2017).  https://doi.org/10.1155/2017/9365012CrossRefGoogle Scholar
  143. 143.
    L.G. De Arco, Y. Zhang, C. Zhou, Large Scale Graphene by Chemical Vapor Deposition: Synthesis, Characterization and Applications, in Nanotechnology and Nanomaterials: Graphene—Synthesis, Characterization, Properties and Applications, ed. by J.R. Gong (InTech, 2011)Google Scholar
  144. 144.
    M. Schwander, K. Partes, Diamond Relat. Mater. 20, 1287 (2011)CrossRefGoogle Scholar
  145. 145.
    P.M. Martin, Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd edn. (Elsevier, 2010)Google Scholar
  146. 146.
    J.R. Creighton, P. Ho, Introduction to Chemical Vapor Deposition (CVD), in Chemical Vapor Deposition, eds. by J.H. Park, T.S. Sudarshan (ASM International, Materials Park, OH, 2001)Google Scholar
  147. 147.
    Chemical vapor deposition (Surface engineering series), eds. by J.H. Park, T.S. Sudarshan (ASM International, 2001)Google Scholar
  148. 148.
    A.C. Jones, P. O’Brien, General Materials Science, CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications (VCH, 2008), pp. 1–352Google Scholar
  149. 149.
    P. Hones, F. Lévy, T. Gerfin, M. Grätzel, Chem. Vap. Deposition 6, 193 (2000)CrossRefGoogle Scholar
  150. 150.
    H. Biederman, in Plasma Polymer Films (Imperial College Press, London, 2004)Google Scholar
  151. 151.
    A. Biswas, Z. Marton, J. Kanzow, J. Kruse, V. Zaporojtchenko, F. Faupel, T. Strunskus, Nano Lett. 3, 1 (2003)CrossRefGoogle Scholar
  152. 152.
    H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, F. Faupel, Nanotechnology 17, 3499 (2006)PubMedCrossRefGoogle Scholar
  153. 153.
    C.N.R. Rao, S.R.C. Vivekchand, K. Biswasa, A. Govindaraj, Dalton Trans. 3728 (2007)Google Scholar
  154. 154.
    D.A. Boyd, L. Greengard, M. Brongersma, M.Y. El-Naggar, D.G. Goodwin, Nano Lett. 6, 2592 (2006)PubMedCrossRefGoogle Scholar
  155. 155.
    E. Alarcón-Lladó, S. Estradé, J.D. Prades, F. Hernandez-Ramírez, J. Arbiol, F. Peiró, J. Ibáñez, L. Artúsa, J.R. Morante, CrystEngComm 13, 656 (2011)CrossRefGoogle Scholar
  156. 156.
    J. Lee, M.C. Orilall, S.C. Warren, M. Kamperman, F.J. DiSalvo, U. Wiesner, Nat. Mater. 7, 222 (2008)PubMedCrossRefGoogle Scholar
  157. 157.
    D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, C. Sada, Chem. Vap. Deposition 10, 229 (2004)CrossRefGoogle Scholar
  158. 158.
    K. Ramasamy, M.A. Malik, P. O’Brien, J. Raftery, Dalton Trans. 39, 1460 (2010)PubMedCrossRefGoogle Scholar
  159. 159.
    W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002)CrossRefGoogle Scholar
  160. 160.
    D. Barreca, A. Gasparotto, C. Maragno, R. Seraglia, E. Tondello, A. Venzo, V. Krishnan, H. Bertagnolli, Appl. Organometal. Chem. 19, 129 (2005)CrossRefGoogle Scholar
  161. 161.
    S. Mlowe, L.D. Nyamen, P.T. Ndifon, M.A. Malik, J. Raftery, P. O’Brien, N. Revaprasadu, Inorg. Chim. Acta 434, 181 (2015)CrossRefGoogle Scholar
  162. 162.
    S. Mlowe, D.J. Lewis, M.A. Malik, J. Raftery, E.B. Mubofu, P. O’Brien, N. Revaprasadu, New J. Chem. 38, 6073 (2014)CrossRefGoogle Scholar
  163. 163.
    R. Morrish, R. Silverstein, C.A. Wolden, J. Am. Chem. Soc. 134, 17854 (2012)PubMedCrossRefGoogle Scholar
  164. 164.
    V.G. Bessergenev, R.J.F. Pereira, A.M.B. do Rego, Surf. Coat. Technol. 201, 9141 (2007)CrossRefGoogle Scholar
  165. 165.
    R.K. Sharma, G. Kedarnath, V.K. Jain, A. Wadawale, M. Nalliath, C.G.S. Pillai, B. Vishwanadh, Dalton Trans. 39, 8779 (2010)PubMedCrossRefGoogle Scholar
  166. 166.
    V.G. Varanasi, T.M. Besmann, R.L. Hyde, E.A. Payzant, T.J. Anderson, J. Alloys Compd. 470, 354 (2009)CrossRefGoogle Scholar
  167. 167.
    R.S. Devan, R.A. Patil, J.-H. Lin, Y.-R. Ma, Adv. Funct. Mater. 22, 3326 (2012)CrossRefGoogle Scholar
  168. 168.
    L. Liu, H. Zhou, R. Cheng, Y. Chen, Y.-C. Lin, Y. Qu, J. Bai, I.A. Ivanov, G. Liu, Y. Huang, X. Duan, J. Mater. Chem. 22, 1498 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    J. Tavares, E.J. Swanson, S. Coulombe, Plasma Process. Polym. 5, 759 (2008)CrossRefGoogle Scholar
  170. 170.
    M.L. Hitchman, A.C. Jones, Chemical Vapor Deposition: Precursors, Processes and Applications (RSC, 2009)Google Scholar
  171. 171.
    G. Luo, P. Zhu, P. Chen, Z. Liu, H. Lin, P. Qian, Vacuum 59, 927 (2000)CrossRefGoogle Scholar
  172. 172.
    T. Weiss, V. Zielasek, M. Bäumer, Sci. Rep. 5, 18194 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    N. Bahlawane, K. Kohse-Höinghaus, P.A. Premkumar, D. Lenoble, Chem. Sci. 3, 929 (2012)CrossRefGoogle Scholar
  174. 174.
    J.A. Conesa, A. Marcilla, J.A. Caballero, R. Font, J. Anal. Appl. Pyrol. 58/59, 617 (2001)Google Scholar
  175. 175.
    A.S. Rozenberg, G.I. Dzhardimalieva, N.V. Chukanov, A.D. Pomogailo, Colloid J. 67, 51 (2005)CrossRefGoogle Scholar
  176. 176.
    X. Gao, D. Chen, D. Dollimore, Thermochim. Acta 223, 75 (1993)CrossRefGoogle Scholar
  177. 177.
    R. Skorpa, T.J.H. Vlugt, D. Bedeaux, S. Kjelstrup, J. Phys. Chem. C 119, 12838 (2015)CrossRefGoogle Scholar
  178. 178.
    W. Shurong, D. Gongxin, Y. Haiping, L. Zhongyang, Progr. Energy Combust. Sci. 62, 33 (2017)CrossRefGoogle Scholar
  179. 179.
    G. Moroi, D. Bilba, N. Bilba, C. Ciobanu, Polym. Degrad. Stabil. 91, 535 (2006)CrossRefGoogle Scholar
  180. 180.
    S. Vyazovkin, C.A. Wight, Ann. Rev. Phys. Chem. 48, 125 (1997)CrossRefGoogle Scholar
  181. 181.
    A.K. Galwey, M.E. Brown, Thermal Decomposition of Ionic Solids (Elsevier, Amsterdam, 1999)Google Scholar
  182. 182.
    S. Vyazovkin, W. Linert, J. Solid State Chem. 114, 392 (1995)CrossRefGoogle Scholar
  183. 183.
    I. Kaya, F. Dogan, A. Bilici, Polym. Int. 58, 570 (2009)CrossRefGoogle Scholar
  184. 184.
    H.S. Khaudeyer, Z.N. Kadhim, W.S. Hanoosh, Res. J. Sci. Tech. 7, 183 (2015)CrossRefGoogle Scholar
  185. 185.
    R.G. Chaudhary, P. Ali, N.V. Gandhare, J.A. Tanna, H.D. Juneja, Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2016.03.008
  186. 186.
    F. Dogan, I. Kaya, A. Bilici, M. Sacak, J. Appl. Polym. Sci. 118, 547 (2010)CrossRefGoogle Scholar
  187. 187.
    F. Dogan, Polym. Eng. Sci. 54, 992 (2014)CrossRefGoogle Scholar
  188. 188.
    A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  189. 189.
    C.D. Doyle, J. Appl. Polym. Sci. 6, 1033 (1970)Google Scholar
  190. 190.
    D.W. Van Krevelen, C. van Heerden, F.J. Huntjons, Fuel 5, 285 (1961)Google Scholar
  191. 191.
    J.R. MacCallum, J. Tanner, Eur. Polym. J. 30, 253 (1951); 6, 1033 (1970)Google Scholar
  192. 192.
    A. Broido, J. Polym. Sci. A-2. Polym. Lett. 7, 1761 (1969)Google Scholar
  193. 193.
    S. Samal, S. Acharya, R.K. Dey, A.R. Ray, J. Appl. Polym. Sci. 88, 570 (2003)CrossRefGoogle Scholar
  194. 194.
    I. Kaya, A. Solguntekin, J. Appl. Polym. Sci. 113, 1994 (2009)CrossRefGoogle Scholar
  195. 195.
    P.M. Madhusudanan, K. Krishnan, K.N. Ninan, Thermochim. Acta 221, 13 (1993)CrossRefGoogle Scholar
  196. 196.
    T. Wanjun, L. Yuwen, Z. Hen, W. Zhiyong, W.J. Cunxin, J. Therm. Anal. Calorim. 74, 309 (2003)CrossRefGoogle Scholar
  197. 197.
    H.H. Horowitz, G. Metzger, Anal. Chem. 35, 1464 (1963)CrossRefGoogle Scholar
  198. 198.
    J.M. Criado, J. Malek, A. Ortega, Thermochim. Acta 147, 377 (1989)CrossRefGoogle Scholar
  199. 199.
    G.I. Senum, K.T. Yang, J. Therm. Anal. 11, 445 (1977)CrossRefGoogle Scholar
  200. 200.
    W. Tang, Y. Liu, C.H. Zhang, C. Wang, Thermochim. Acta 408, 39 (2003)CrossRefGoogle Scholar
  201. 201.
    H.F. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  202. 202.
    J. Flynn, L. Wall, J. Polym. Sci. A-2. Polym. Lett. 4, 323 (1966)Google Scholar
  203. 203.
    T. Ozawa, Bull. Chem. Soc. Jpn 38, 1881 (1965)CrossRefGoogle Scholar
  204. 204.
    H.L. Friedman, J. Polym. Sci., Part C: Polym. Lett. 7, 41 (1969)Google Scholar
  205. 205.
    S.D. Kim, J.K. Park, Thermochim. Acta 264, 137 (1995)CrossRefGoogle Scholar
  206. 206.
    P. Simon, J. Therm. Anal. Calorim. 74, 123 (2004)CrossRefGoogle Scholar
  207. 207.
    S. Vyazovkin, J. Comput. Chem. 18, 393 (1997)CrossRefGoogle Scholar
  208. 208.
    S. Vyazovkin, J. Comput. Chem. 22, 178 (2001)CrossRefGoogle Scholar
  209. 209.
    S. Vyazovkin, D. Dollimore, J. Chem. Inf. Comput. Sci. 730, 42 (1996)CrossRefGoogle Scholar
  210. 210.
    Ö.F. Öztürk, D.A. Köse, A.N. Ay, B. Zumreoglu-Karan, J. Appl. Polym. Sci. 98, 490 (2005)CrossRefGoogle Scholar
  211. 211.
    F. Doğan, Ö.F. Öztürk, M. Yürekli, A.N. Ay, D.A. Köse, J. Appl. Polym. Sci. 106, 1129 (2007)CrossRefGoogle Scholar
  212. 212.
    G.E. Zaikov, A. Jiménez (eds.), Polymer Analysis, Degradation, and Stabilization (Nova Science Publication, New York, 2005)Google Scholar
  213. 213.
    N.C. Billingham, Degradation and Stabilization of Polymers, in Materials Science and Technology. 469–507 (2013)Google Scholar
  214. 214.
    S.S. Batsanov, A.S. Batsanov, Introduction to Structural Chemistry (Springer, Dordrecht, 2012)CrossRefGoogle Scholar
  215. 215.
    L.L. Andreeva V.A. Molochko, Constants of Inorganic Substances. A Handbook (Begell House Publishers Inc., U.S., 1995)Google Scholar
  216. 216.
    D. Wohrle, A.D. Pomogailo, Metal Complexes and Metals in Macromolecules (Wiley-VCH, Weinheim, 2003)CrossRefGoogle Scholar
  217. 217.
    M.N. Patel, V.J. Patel, Indian J. Chem. A 28, 428 (1989)Google Scholar
  218. 218.
    M.N. Patel, D.H. Sutaria, G.J. Patel, Synth. React. Inorg. Metal-Org. Chem. 24, 401 (1994)CrossRefGoogle Scholar
  219. 219.
    O.G. Marambio, G.C. del Pizzaro, M. Jeria-Orell, M. Huerta, C. Olea-Azar, W.D. Habicher, Polym. Chem. 43, 4933 (2005)CrossRefGoogle Scholar
  220. 220.
    S. Vlad, A. Vlad, Mater. Plastice 45, 172 (2008)Google Scholar
  221. 221.
    N. Nishat, S. Hasnain, T. Ahmad, A. Parveen, J. Therm. Anal. Calorim. 105, 969 (2011)CrossRefGoogle Scholar
  222. 222.
    I. Kaya, A. Bilici, J. Appl. Polym. Sci. 105, 1356 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations