Advertisement

Peripheral Artery Disease and Stroke

  • Concetta Zito
  • Roberta Manganaro
  • Scipione Carerj
  • Fausto J. Pinto
  • Bijoy J. Kandheria
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Peripheral artery disease (PAD) and stroke can occur as vascular complication of anticancer treatment. Interruption of vascular endothelial growth factor (VEGF) inhibitor signaling (i.e., bevacizumab) is associated with vascular toxicity and clinical sequelae such as hypertension, stroke, and thromboembolism beyond acute coronary syndromes. However, BCR-ABL tyrosine-kinase inhibitors (TKIs), used for the treatment of chronic myeloid leukemia (CML), are the main antineoplastic drugs involved in the development of PAD. In particular, second- and third-generation TKIs, such as nilotinib and ponatinib, while emerging as a potent arm in contrasting CML, are associated with a higher risk of PAD development rather than imatinib. Factors favoring vascular complication are the presence of traditional cardiovascular risk factors (CVRF) and predisposing genetic factors, high doses of BCR-ABL TKIs, longer time of drug exposure, and sequential use of potent TKIs. In addition, circulating concentrations of VEGF are reduced by cyclophosphamide administered at continuous low doses, which might underpin some of the observed vascular toxicity, as seen in patients treated with VEGFIs. This alkylating agent is therefore associated with vascular complications including stroke. The risk of stroke is also increased after treatment with anthracyclines that can induce endothelial dysfunction and increase arterial stiffness. Head and neck radiotherapy is associated with a doubled risk of cerebrovascular ischemic event, especially if exposure occurs in childhood. The mechanisms involved in radiation vasculopathy are represented by endothelial dysfunction, medial necrosis, fibrosis, and accelerated atherosclerosis. An accurate cardiovascular risk stratification is strongly recommended in patients candidate to anticancer treatment associated with higher risk of vascular complication, in order to correct CVRF and select appropriate patient tailored strategy of treatment. Then a clinical follow-up, eventually associated to instrumental evaluation through vascular ultrasound, should be performed.

Keywords

Endothelial dysfunction Atherosclerosis Arterial stiffness Thrombosis Prevention 

References

  1. 1.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.CrossRefGoogle Scholar
  2. 2.
    O'Hare T, Eide CA, Deininger MW. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood. 2007;110(7):2242–9.CrossRefGoogle Scholar
  3. 3.
    Radich JP. Monitoring response to tyrosine kinase inhibitor therapy, mutational analysis, and new treatment options in chronic myelogenous leukemia. J Natl Compr Cancer Netw. 2013;11(5 Suppl):663–6.CrossRefGoogle Scholar
  4. 4.
    Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.CrossRefGoogle Scholar
  5. 5.
    Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.CrossRefGoogle Scholar
  6. 6.
    Aichberger KJ, Herndlhofer S, Schernthaner GH, Schillinger M, Mitterbauer-Hohendanner G, Sillaber C, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86(7):533–9.CrossRefGoogle Scholar
  7. 7.
    Kim TD, Rea D, Schwarz M, Grille P, Nicolini FE, Rosti G, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21.CrossRefGoogle Scholar
  8. 8.
    Le Coutre P, Rea D, Abruzzese E, Dombret H, Trawinska MM, Herndlhofer S, et al. Severe peripheral arterial disease during nilotinib therapy. J Natl Cancer Inst. 2011;103(17):1347–8.CrossRefGoogle Scholar
  9. 9.
    Mirault T, Rea D, Azarine A, Messas E. Rapid onset of peripheral artery disease in a chronic myeloid leukemia patient without prior arterial disorder: direct relationship with nilotinib exposure and clinical outcome. Eur J Haematol. 2015;94(4):363–7.CrossRefGoogle Scholar
  10. 10.
    Valent P, Hadzijusufovic E, Hoermann G, Fureder W, Schernthaner GH, Sperr WR, et al. Risk factors and mechanisms contributing to TKI-induced vascular events in patients with CML. Leuk Res. 2017;59:47–54.CrossRefGoogle Scholar
  11. 11.
    Giles FJ, Mauro MJ, Hong F, Ortmann CE, McNeill C, Woodman RC, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27(6):1310–5.CrossRefGoogle Scholar
  12. 12.
    Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125(6):901–6.CrossRefGoogle Scholar
  13. 13.
    Larson RA, Hochhaus A, Hughes TP, Clark RE, Etienne G, Kim DW, et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia. 2012;26(10):2197–203.CrossRefGoogle Scholar
  14. 14.
    le Coutre PD, Hughes TP, Mahon FX, Kim DW, Steegmann JL, Shah NP, et al. Low incidence of peripheral arterial disease in patients receiving dasatinib in clinical trials. Leukemia. 2016;30(7):1593–6.CrossRefGoogle Scholar
  15. 15.
    Douxfils J, Haguet H, Mullier F, Chatelain C, Graux C, Dogne JM. Association between BCR-ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta-analysis. JAMA Oncol. 2016;  https://doi.org/10.1001/jamaoncol.2015.5932. [Epub ahead of print]CrossRefGoogle Scholar
  16. 16.
    Breccia M, Muscaritoli M, Aversa Z, Mandelli F, Alimena G. Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J Clin Oncol. 2004;22(22):4653–5.CrossRefGoogle Scholar
  17. 17.
    Mayer K, Gielen GH, Willinek W, Muller MC, Wolf D. Fatal progressive cerebral ischemia in CML under third-line treatment with ponatinib. Leukemia. 2014;28(4):976–7.CrossRefGoogle Scholar
  18. 18.
    Bocchia M, Galimberti S, Aprile L, Sicuranza A, Gozzini A, Santilli F, et al. Genetic predisposition and induced pro-inflammatory/pro-oxidative status may play a role in increased atherothrombotic events in nilotinib treated chronic myeloid leukemia patients. Oncotarget. 2016;7(44):72311–21.CrossRefGoogle Scholar
  19. 19.
    Quintas-Cardama A, Kantarjian H, Cortes J. Nilotinib-associated vascular events. Clin Lymphoma Myeloma Leuk. 2012;12(5):337–40.CrossRefGoogle Scholar
  20. 20.
    Gover-Proaktor A, Granot G, Shapira S, Raz O, Pasvolsky O, Nagler A, et al. Ponatinib reduces viability, migration, and functionality of human endothelial cells. Leuk Lymphoma. 2017;58(6):1455–67.CrossRefGoogle Scholar
  21. 21.
    Rea D, Mirault T, Cluzeau T, Gautier JF, Guilhot F, Dombret H, et al. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica. 2014;99(7):1197–203.CrossRefGoogle Scholar
  22. 22.
    Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9.CrossRefGoogle Scholar
  23. 23.
    Racil Z, Razga F, Drapalova J, Buresova L, Zackova D, Palackova M, et al. Mechanism of impaired glucose metabolism during nilotinib therapy in patients with chronic myelogenous leukemia. Haematologica. 2013;98(10):e124–6.CrossRefGoogle Scholar
  24. 24.
    Li W, Croce K, Steensma DP, McDermott DF, Ben-Yehuda O, Moslehi J. Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J Am Coll Cardiol. 2015;66(10):1160–78.CrossRefGoogle Scholar
  25. 25.
    Gugliotta G, Castagnetti F, Breccia M, Gozzini A, Usala E, Carella AM, et al. Rotation of nilotinib and imatinib for first-line treatment of chronic phase chronic myeloid leukemia. Am J Hematol. 2016;91(6):617–22.CrossRefGoogle Scholar
  26. 26.
    Valent P, Herndlhofer S, Schneeweiss M, Boidol B, Ringler A, Kubicek S, et al. TKI rotation-induced persistent deep molecular response in multi-resistant blast crisis of Ph+ CML. Oncotarget. 2017;8(14):23061–72.CrossRefGoogle Scholar
  27. 27.
    Aboyans V, Ricco JB, MEL B, Bjorck M, Brodmann M, Cohnert T, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):763–816.CrossRefGoogle Scholar
  28. 28.
    Fokkema M, den Hartog AG, Bots ML, van der Tweel I, Moll FL, de Borst GJ. Stenting versus surgery in patients with carotid stenosis after previous cervical radiation therapy: systematic review and meta-analysis. Stroke. 2012;43(3):793–801.CrossRefGoogle Scholar
  29. 29.
    De Bruin ML, Dorresteijn LD, van't Veer MB, Krol AD, van der Pal HJ, Kappelle AC, et al. Increased risk of stroke and transient ischemic attack in 5-year survivors of Hodgkin lymphoma. J Natl Cancer Inst. 2009;101(13):928–37.CrossRefGoogle Scholar
  30. 30.
    Woodward WA, Durand JB, Tucker SL, Strom EA, Perkins GH, Oh J, et al. Prospective analysis of carotid artery flow in breast cancer patients treated with supraclavicular irradiation 8 or more years previously: no increase in ipsilateral carotid stenosis after radiation noted. Cancer. 2008;112(2):268–73.CrossRefGoogle Scholar
  31. 31.
    Brada M, Burchell L, Ashley S, Traish D. The incidence of cerebrovascular accidents in patients with pituitary adenoma. Int J Radiat Oncol Biol Phys. 1999;45(3):693–8.CrossRefGoogle Scholar
  32. 32.
    Dorresteijn LD, Kappelle AC, Boogerd W, Klokman WJ, Balm AJ, Keus RB, et al. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol. 2002;20(1):282–8.CrossRefGoogle Scholar
  33. 33.
    Levinson SA, Close MB, Ehrenfeld WK, Stoney RJ. Carotid artery occlusive disease following external cervical irradiation. Arch Surg. 1973;107(3):395–7.CrossRefGoogle Scholar
  34. 34.
    Hayward RH. Arteriosclerosis induced by radiation. Surg Clin N Am. 1972;52(2):359–66.CrossRefGoogle Scholar
  35. 35.
    Cheng SW, Ting AC, Wu LL. Ultrasonic analysis of plaque characteristics and intimal-medial thickness in radiation-induced atherosclerotic carotid arteries. Eur J Vasc Endovasc Surg. 2002;24(6):499–504.CrossRefGoogle Scholar
  36. 36.
    Zidar N, Ferluga D, Hvala A, Popovic M, Soba E. Contribution to the pathogenesis of radiation-induced injury to large arteries. J Laryngol Otol. 1997;111(10):988–90.CrossRefGoogle Scholar
  37. 37.
    Nardelli E, Fiaschi A, Ferrari G. Delayed cerebrovascular consequences of radiation to the neck. A clinicopathologic study of a case. Arch Neurol. 1978;35(8):538–40.CrossRefGoogle Scholar
  38. 38.
    Fonkalsrud EW, Sanchez M, Zerubavel R, Mahoney A. Serial changes in arterial structure following radiation therapy. Surg Gynecol Obstet. 1977;145(3):395–400.PubMedGoogle Scholar
  39. 39.
    Louis EL, McLoughlin MJ, Wortzman G. Chronic damage to medium and large arteries following irradiation. J Can Assoc Radiol. 1974;25(2):94–104.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Fajardo LF. The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol. 2005;44(1):13–22.CrossRefGoogle Scholar
  41. 41.
    Goldhirsch A, Joss R, Markwalder TM, Studer H, Brunner K. Acute cerebrovascular accident after treatment with cis-platinum and methylprednisolone. Oncology. 1983;40(5):344–5.CrossRefGoogle Scholar
  42. 42.
    Digklia A, Voutsadakis IA. Acute cerebrovascular accident after cisplatin treatment in a patient taking letrozole. Chemotherapy. 2012;58(6):435–8.CrossRefGoogle Scholar
  43. 43.
    Gamble GE, Tyrrell P. Acute stroke following cisplatin therapy. Clin Oncol. 1998;10(4):274–5.CrossRefGoogle Scholar
  44. 44.
    Serrano-Castro PJ, Guardado-Santervas P, Olivares-Romero J. Ischemic stroke following cisplatin and 5-fluorouracil therapy: a transcranial Doppler study. Eur Neurol. 2000;44(1):63–4.CrossRefGoogle Scholar
  45. 45.
    Lange J, Audebert HJ, Endres M, Rocco A. Cisplatin-related cerebral infarction in testicular germ cell Cancer: short report of three cases and P in testicular germ cell cancer: short report of three cases and pathomechanism. Clin Neurol Neurosurg. 2017;152:76–7.CrossRefGoogle Scholar
  46. 46.
    Sekijima T, Tanabe A, Maruoka R, Fujishiro N, Yu S, Fujiwara S, et al. Impact of platinum-based chemotherapy on the progression of atherosclerosis. Climacteric. 2011;14(1):31–40.CrossRefGoogle Scholar
  47. 47.
    El Amrani M, Heinzlef O, Debroucker T, Roullet E, Bousser MG, Amarenco P. Brain infarction following 5-fluorouracil and cisplatin therapy. Neurology. 1998;51(3):899–901.CrossRefGoogle Scholar
  48. 48.
    Kinno R, Kii Y, Uchiyama M, Owan Y, Yamazaki T, Fukui T. 5-fluorouracil-induced leukoencephalopathy with acute stroke-like presentation fulfilling criteria for recombinant tissue plasminogen activator therapy. J Stroke Cerebrovasc Dis. 2014;23(2):387–9.CrossRefGoogle Scholar
  49. 49.
    Li J, Lee JJ, Chu E, Baehring JM. Reversible leukoencephalopathy with stroke-like presentation in a patient with 5-dihydropyrimidine dehydrogenase deficiency treated with continuous 5-fluorouracil infusion. Clin Colorectal Cancer. 2012;11(3):215–7.CrossRefGoogle Scholar
  50. 50.
    Nguyen MT, Stoianovici R, Brunetti L. Chemotherapy induced stroke mimic: 5-fluorouracil encephalopathy fulfilling criteria for tissue plasminogen activator therapy. Am J Emerg Med. 2017;35(9):1389–90.CrossRefGoogle Scholar
  51. 51.
    Domenico G, Vincenza T, Emiddio B, Dino T, Franco MC, Bruno D. A fatal brain stroke in patient with advanced breast cancer treated with bevacizumab: a case report. World J Oncol. 2010;1(6):252–4.PubMedGoogle Scholar
  52. 52.
    Ranpura V, Hapani S, Chuang J, Wu S. Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis of randomized controlled trials. Acta Oncol. 2010;49(3):287–97.CrossRefGoogle Scholar
  53. 53.
    Kuenen BC. Analysis of prothrombotic mechanisms and endothelial perturbation during treatment with angiogenesis inhibitors. Pathophysiol Haemost Thromb. 2003;33(Suppl 1):13–4.CrossRefGoogle Scholar
  54. 54.
    Di Lisi D, Madonna R, Zito C, Bronte E, Badalamenti G, Parrella P, et al. Anticancer therapy-induced vascular toxicity: VEGF inhibition and beyond. Int J Cardiol. 2017;227:11–7.CrossRefGoogle Scholar
  55. 55.
    Murata T, Yamawaki H, Hori M, Sato K, Ozaki H, Karaki H. Chronic vascular toxicity of doxorubicin in an organ-cultured artery. Br J Pharmacol. 2001;132(7):1365–73.CrossRefGoogle Scholar
  56. 56.
    Chaosuwannakit N, D'Agostino R Jr, Hamilton CA, Lane KS, Ntim WO, Lawrence J, et al. Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 2010;28(1):166–72.CrossRefGoogle Scholar
  57. 57.
    Drafts BC, Twomley KM, D'Agostino R Jr, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6(8):877–85.CrossRefGoogle Scholar
  58. 58.
    Grover S, Lou PW, Bradbrook C, Cheong K, Kotasek D, Leong DP, et al. Early and late changes in markers of aortic stiffness with breast cancer therapy. Intern Med J. 2015;45(2):140–7.CrossRefGoogle Scholar
  59. 59.
    Dengel DR, Kelly AS, Zhang L, Hodges JS, Baker KS, Steinberger J. Signs of early sub-clinical atherosclerosis in childhood cancer survivors. Pediatr Blood Cancer. 2014;61(3):532–7.CrossRefGoogle Scholar
  60. 60.
    Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26(9):1013–32.CrossRefGoogle Scholar
  61. 61.
    Gujral DM, Shah BN, Chahal NS, Senior R, Harrington KJ, Nutting CM. Clinical features of radiation-induced carotid atherosclerosis. Clin Oncol. 2014;26(2):94–102.CrossRefGoogle Scholar
  62. 62.
    Al-Mubarak N, Roubin GS, Iyer SS, Gomez CR, Liu MW, Vitek JJ. Carotid stenting for severe radiation-induced extracranial carotid artery occlusive disease. J Endovasc Ther. 2000;7(1):36–40.CrossRefGoogle Scholar
  63. 63.
    Ting AC, Cheng SW, Yeung KM, Cheng PW, Lui WM, Ho P, et al. Carotid stenting for radiation-induced extracranial carotid artery occlusive disease: efficacy and midterm outcomes. J Endovasc Ther. 2004;11(1):53–9.CrossRefGoogle Scholar
  64. 64.
    Friedell ML, Joseph BP, Cohen MJ, Horowitz JD. Surgery for carotid artery stenosis following neck irradiation. Ann Vasc Surg. 2001;15(1):13–8.CrossRefGoogle Scholar
  65. 65.
    Protack CD, Bakken AM, Saad WE, Illig KA, Waldman DL, Davies MG. Radiation arteritis: a contraindication to carotid stenting? J Vasc Surg. 2007;45(1):110–7.CrossRefGoogle Scholar
  66. 66.
    Shin SH, Stout CL, Richardson AI, DeMasi RJ, Shah RM, Panneton JM. Carotid angioplasty and stenting in anatomically high-risk patients: safe and durable except for radiation-induced stenosis. J Vasc Surg. 2009;50(4):762–7. discussion 7–8CrossRefGoogle Scholar
  67. 67.
    Ricco JB, Marchand C, Neau JP, Marchand E, Cau J, Febrer G. Prosthetic carotid bypass grafts for atherosclerotic lesions: a prospective study of 198 consecutive cases. Eur J Vasc Endovasc Surg. 2009;37(3):272–8.CrossRefGoogle Scholar
  68. 68.
    Moreo A, Vallerio P, Ricotta R, Stucchi M, Pozzi M, Musca F, et al. Effects of cancer therapy targeting vascular endothelial growth factor receptor on central blood pressure and cardiovascular system. Am J Hypertens. 2016;29(2):158–62.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Concetta Zito
    • 1
  • Roberta Manganaro
    • 1
  • Scipione Carerj
    • 1
  • Fausto J. Pinto
    • 2
  • Bijoy J. Kandheria
    • 3
  1. 1.Department of Clinical and Experimental MedicineCardiology Section, AOU Policlinico “G. Martino” – University of MessinaMessinaItaly
  2. 2.Department of CardiologyUniversity Hospital Santa Maria, CHLN University of LisbonLisbonPortugal
  3. 3.CardiologyAurora Health CareMilwaukeeUSA

Personalised recommendations