Advertisement

Prevention and Clinical Management of Cardiovascular Damage Induced by Anticancer Drugs: Need for Early Biomarkers and Cardio- and Vasculoprotection in Personalized Therapy

  • Rosalinda Madonna
  • Francesca Macaione
  • Peter Ferdinandy
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

The use of chemotherapy has largely improved the prognosis of cancer patients in the past two decades. However, the advent of more effective anticancer therapies has led to a higher incidence of cardiovascular toxicity that shows an increased incidence and represents a significant determinant of quality of life and mortality during ongoing treatment and in long-term survivors of cancer. In this setting, the primary objective for cardiologists and oncologists is the early identification of patients at high risk for developing cardiovascular toxicity and the identification of the cardiovascular cardiotoxicity in the earliest stages to personalize cancer therapy, arrange preventive interventions, and implement cardioprotective treatment.

Recently, there is growing interest on the “omics” technologies, including genomics, transcriptomics, proteomics, and metabolomics, which allow the description of a large number of molecular features and have the potential to identify new factors that contribute to cardiac and endothelial function and how they interact. These technologies could play a pivotal role in unraveling the pathophysiology of vascular damage induced by anticancer treatment, in predicting the cardiovascular damage, and in monitoring individual responses to antineoplastic drugs. Leveraging multi-omics may better individuate the highly sensitive biomarkers of developing cardiovascular toxicity and further the goal of precision medicine.

Keywords

Biomarkers Omics Cardioprotection Vasculoprotection Cardiotoxicity Vascular Toxicity Anticancer drugs 

References

  1. 1.
    DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, et al. Cardiovascular side effects of cancer therapies: a position statement from the heart failure association of the european society of cardiology. Eur J Heart Fail. 2011;13:1–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66:309–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Truong J, Yan AT, Cramarossa G, Chan KK. Chemotherapy-induced cardiotoxicity: detection, prevention, and management. Can J Cardiol. 2014;30:869–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60:2504–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34:1102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Daher IN, Yeh ET. Vascular complications of selected cancer therapies. Nat Clin Pract Cardiovasc Med. 2008;5:797–805.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: Esmo clinical practice guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Soultati A, Mountzios G, Avgerinou C, Papaxoinis G, Pectasides D, Dimopoulos MA, et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012;38:473–83.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309:H1453–67.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kubota Y. Tumor angiogenesis and anti-angiogenic therapy. Keio J Med. 2012;61:47–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Armenian SH, Lacchetti C, Lenihan D. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline summary. J Oncol Prac. 2017;13:270–5.CrossRefGoogle Scholar
  15. 15.
    Cardinale D, Biasillo G, Salvatici M, Sandri MT, Cipolla CM. Using biomarkers to predict and to prevent cardiotoxicity of cancer therapy. Expert Rev Mol Diagn. 2017;17:245–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Tallaj JA, Franco V, Rayburn BK, Pinderski L, Benza RL, Pamboukian S, et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 2005;24:2196–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128:1810–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Madonna R, Cadeddu C, Deidda M, Mele D, Monte I, Novo G, et al. Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the Italian working group on drug cardiotoxicity and cardioprotection. Heart Fail Rev. 2015;20:621–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Higgins AY, O'Halloran TD, Chang JD. Chemotherapy-induced cardiomyopathy. Heart Fail Rev. 2015;20:721–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamo CE, Bloom MW, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail. 2016;9:e002843.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3:e000665.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. Rev Esp Cardiol. 2004;57:1213–32. [Article in Spanish].PubMedCrossRefGoogle Scholar
  25. 25.
    Okumura K, Jin D, Takai S, Miyazaki M. Beneficial effects of angiotensin-converting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol. 2002;88:183–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Maeda A, Honda M, Kuramochi T, Tanaka K, Takabatake T. An angiotensin-converting enzyme inhibitor protects against doxorubicin-induced impairment of calcium handling in neonatal rat cardiac myocytes. Clin Exp Pharmacol Physiol. 1997;24:720–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Cernecka H, Ochodnicka-Mackovicova K, Kucerova D, Kmecova J, Nemcekova V, Doka G, et al. Enalaprilat increases pparbeta/delta expression, without influence on pparalpha and ppargamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol. 2013;714:472–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Boucek RJ Jr, Steele A, Miracle A, Atkinson J. Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol. 2003;3:319–29.PubMedCrossRefGoogle Scholar
  30. 30.
    Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the overcome trial (prevention of left ventricular dysfunction with enalapril and carvedilol in patients submitted to intensive chemotherapy for the treatment of malignant hemopathies). J Am Coll Cardiol. 2013;61:2355–62.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Cominacini L, Pasini A, Garbin U, Evangelista S, Crea AE, Tagliacozzi D, et al. Zofenopril inhibits the expression of adhesion molecules on endothelial cells by reducing reactive oxygen species. Am J Hypertens. 2002;15:891–5.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Donnini S, Terzuoli E, Ziche M, Morbidelli L. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talk. J Pharmacol Exp Therapeut. 2010;332:776–84.CrossRefGoogle Scholar
  34. 34.
    Donnini S, Solito R, Giachetti A, Granger HJ, Ziche M, Morbidelli L. Fibroblast growth factor-2 mediates angiotensin-converting enzyme inhibitor-induced angiogenesis in coronary endothelium. J Pharmacol Exp Therapeut. 2006;319:515–22.CrossRefGoogle Scholar
  35. 35.
    Monti M, Terzuoli E, Ziche M, Morbidelli L. The sulphydryl containing ace inhibitor zofenoprilat protects coronary endothelium from doxorubicin-induced apoptosis. Pharmacol Res. 2013;76:171–81.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zucchi R, Ghelardoni S, Evangelista S. Biochemical basis of ischemic heart injury and of cardioprotective interventions. Curr Med Chem. 2007;14:1619–37.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sanbe A, Tanonaka K, Kobayasi R, Takeo S. Effects of long-term therapy with ace inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol. 1995;27:2209–22.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Soga M, Kamal FA, Watanabe K, Ma M, Palaniyandi S, Prakash P, et al. Effects of angiotensin ii receptor blocker (candesartan) in daunorubicin-induced cardiomyopathic rats. Intl J Cardiol. 2006;110:378–85.CrossRefGoogle Scholar
  39. 39.
    Iqbal M, Dubey K, Anwer T, Ashish A, Pillai KK. Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol Rep. 2008;60:382–90.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yamagishi S, Takeuchi M. Telmisartan is a promising cardiometabolic sartan due to its unique ppar-gamma-inducing property. Med Hypotheses. 2005;64:476–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cadeddu C, Piras A, Mantovani G, Deidda M, Dessi M, Madeddu C, et al. Protective effects of the angiotensin ii receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J. 2010;160(487):e481–7.Google Scholar
  42. 42.
    Heck SL, Gulati G, Ree AH, Schulz-Menger J, Gravdehaug B, Rosjo H, et al. Rationale and design of the prevention of cardiac dysfunction during an adjuvant breast cancer therapy (prada) trial. Cardiology. 2012;123:240–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K, et al. Notable effects of angiotensin ii receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49:2900–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Thakur A, Witteles RM. Cancer therapy-induced left ventricular dysfunction: interventions and prognosis. J Cardiac Fail. 2014;20:155–8.CrossRefGoogle Scholar
  46. 46.
    Nohria A. Beta-adrenergic blockade for anthracycline- and trastuzumab-induced cardiotoxicity: is prevention better than cure? Circ Heart Fail. 2013;6:358–61.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Erickson CE, Gul R, Blessing CP, Nguyen J, Liu T, Pulakat L, Bastepe M, Jackson EK, Andresen BT. The beta-blocker nebivolol is a grk/beta-arrestin biased agonist. PLoS One. 2013;8:e71980.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, et al. Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated egfr transactivation. Proc Natl Acad Sci U S A. 2008;105:14555–60.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Arozal W, Watanabe K, Veeraveedu PT, Ma M, Thandavarayan RA, Sukumaran V, et al. Protective effect of carvedilol on daunorubicin-induced cardiotoxicity and nephrotoxicity in rats. Toxicology. 2010;274:18–26.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Asanuma H, Minamino T, Sanada S, Takashima S, Ogita H, Ogai A, et al. Beta-adrenoceptor blocker carvedilol provides cardioprotection via an adenosine-dependent mechanism in ischemic canine hearts. Circulation. 2004;109:2773–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S, et al. Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation. 2002;105:2867–71.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Oliveira PJ, Bjork JA, Santos MS, Leino RL, Froberg MK, Moreno AJ, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol. 2004;200:159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, et al. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 2004;279:8290–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu Q, et al. Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling. Circ Res. 2013;112:498–509.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Gulati G, Heck SL, Rosjo H, Ree AH, Hoffmann P, Hagve TA, et al. Neurohormonal blockade and circulating cardiovascular biomarkers during anthracycline therapy in breast cancer patients: results from the prada (prevention of cardiac dysfunction during adjuvant breast cancer therapy) study. J Am Heart Assoc. 2017;6(11):e006513.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shibata MC, Flather MD, Bohm M, Borbola J, Cohen-Solal A, Dumitrascu D, et al. Study of the effects of nebivolol intervention on outcomes and rehospitalisation in seniors with heart failure (seniors). Rationale and design. Intl J Cardiol. 2002;86:77–85.CrossRefGoogle Scholar
  59. 59.
    Munzel T, Gori T. Nebivolol: the somewhat-different beta-adrenergic receptor blocker. J Am Coll Cardiol. 2009;54:1491–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Katsi V, Zerdes I, Manolakou S, Makris T, Nihoyannopoulos P, Tousoulis D, et al. Anti-vegf anticancer drugs: mind the hypertension. Recent Adv Cardiovasc Drug Discov. 2014;9:63–72.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    de Nigris F, Rienzo M, Schiano C, Fiorito C, Casamassimi A, Napoli C. Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur J Cancer. 2008;44:334–40.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Intl J Cardiol. 2013;167:2306–10.CrossRefGoogle Scholar
  63. 63.
    Kerkela R, Woulfe KC, Durand JB, Vagnozzi R, Kramer D, Chu TF. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of amp-activated protein kinase. Clin Translat Sci. 2009;2:15–25.CrossRefGoogle Scholar
  64. 64.
    Eichhorn EJ, Bedotto JB, Malloy CR, Hatfield BA, Deitchman D, Brown M, et al. Effect of beta-adrenergic blockade on myocardial function and energetics in congestive heart failure. Improvements in hemodynamic, contractile, and diastolic performance with bucindolol. Circulation. 1990;82:473–83.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Oliva S, Cioffi G, Frattini S, Simoncini EL, Faggiano P, Boccardi L, et al. Administration of angiotensin-converting enzyme inhibitors and beta-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: marker of risk or cardioprotection in the real world? Oncologist. 2012;17:917–24.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pituskin E, Haykowsky M, Mackey JR, Thompson RB, Ezekowitz J, Koshman S, et al. Rationale and design of the multidisciplinary approach to novel therapies in cardiology oncology research trial (manticore 101--breast): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with her2+ early breast cancer using cardiac mri. BMC Cancer. 2011;11:318.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17:81–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association professional education Committee of the Council for high blood pressure research. Circulation. 2008;117:e510–26.PubMedCrossRefGoogle Scholar
  70. 70.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: Rhe task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
  71. 71.
    Small HY, Montezano AC, Rios FJ, Savoia C, Touyz RM. Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol. 2014;30:534–43.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol. 1999;19:2894–900.PubMedCrossRefGoogle Scholar
  73. 73.
    Jones SP, Teshima Y, Akao M, Marban E. Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res. 2003;93:697–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, et al. Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res. 2009;69:695–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60:2384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Chotenimitkhun R, D'Agostino R Jr, Lawrence JA, Hamilton CA, Jordan JH, Vasu S, et al. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol. 2015;31:302–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58:988–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Damrot J, Nubel T, Epe B, Roos WP, Kaina B, Fritz G. Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide. Br J Pharmacol. 2006;149:988–97.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Xi L, Zhu SG, Das A, Chen Q, Durrant D, Hobbs DC, et al. Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide. 2012;26:274–84.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition. 2013;29:15–21.PubMedCrossRefGoogle Scholar
  81. 81.
    Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev. 2012;8:CD008465.Google Scholar
  82. 82.
    Jing L. Exercise interventions on health-related quality of life for patients with cancer during active treatment. Clin J Oncol Nurs. 2013;17:559–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Campia U, Barac A. Exercise and aerobic fitness to reduce cancer-related cardiovascular toxicity. Curr Treat Options Cardiovasc Med. 2016;18:44.PubMedCrossRefGoogle Scholar
  84. 84.
    Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 2011;124:642–50.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kirkham AA, Davis MK. Exercise prevention of cardiovascular disease in breast cancer survivors. J Oncol. 2015;2015:917606.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Stefani L, Maffulli N, Mascherini G, Francini L, Petri C, Galanti G. Exercise as prescription therapy: benefits in cancer and hypertensive patients. Translat Med. 2015;11:39–43.Google Scholar
  87. 87.
    Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by pdgf inhibition. J Clin Invest. 2005;115:2811–21.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Haykowsky MJ, Mackey JR, Thompson RB, Jones LW, Paterson DI. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res. 2009;15:4963–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Scott JM, Koelwyn GJ, Hornsby WE, Khouri M, Peppercorn J, Douglas PS, et al. Exercise therapy as treatment for cardiovascular and oncologic disease after a diagnosis of early-stage cancer. Semin Oncol. 2013;40:218–28.PubMedCrossRefGoogle Scholar
  90. 90.
    Biasillo G, Cipolla CM, Cardinale D. Cardio-oncology: gaps in knowledge, goals, advances, and educational efforts. Curr Oncol Rep. 2017;19:55.PubMedCrossRefGoogle Scholar
  91. 91.
    Moslehi J, Cheng S. Cardio-oncology: it takes two to translate. Sci Translat Med. 2013;5:187fs120.Google Scholar
  92. 92.
    Martin M, Esteva FJ, Alba E, Khandheria B, Perez-Isla L, Garcia-Saenz JA, et al. Minimizing cardiotoxicity while optimizing treatment efficacy with trastuzumab: review and expert recommendations. Oncologist. 2009;14:1–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Okwuosa TM, Barac A. Burgeoning cardio-oncology programs: challenges and opportunities for early career cardiologists/faculty directors. J Am Coll Cardiol. 2015;66:1193–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Speyer JL, Green MD, Zeleniuch-Jacquotte A, Wernz JC, Rey M, Sanger J, et al. Icrf-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10:117–27.PubMedCrossRefGoogle Scholar
  95. 95.
    Bovelli D, Plataniotis G, Roila F, Group EGW. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: Esmo clinical practice guidelines. Ann Oncol. 2010;21(Suppl 5):v277–82.PubMedCrossRefGoogle Scholar
  96. 96.
    Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, et al. Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude lifetime cohort study. J Am Coll Cardiol. 2015;65:2511–22.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Frickhofen N, Beck FJ, Jung B, Fuhr HG, Andrasch H, Sigmund M. Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol. 2002;13:797–801.PubMedCrossRefGoogle Scholar
  98. 98.
    Ozdogru I. Anthracycline-induced cardiotoxicity. Turk Kardiyol Dern Ars. 2014;42(3):274–6.PubMedGoogle Scholar
  99. 99.
    Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27:127–45.PubMedCrossRefGoogle Scholar
  100. 100.
    Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of beta-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail. 2013;6:420–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Marwick TH, Negishi T. Strain surveillance during chemotherapy for improving cardiovascular outcomes (succour study). Available at: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366020.
  102. 102.
    Clarke E, Lenihan D. Cardio-oncology: a new discipline in medicine to lead us into truly integrative care. Futur Cardiol. 2015;11:359–61.CrossRefGoogle Scholar
  103. 103.
    Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8:191–202.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Tocchetti CG, Cadeddu C, Di Lisi D, Femmino S, Madonna R, Mele D, et al. From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: a translational overview. Antioxid Redox Signal. 2017;  https://doi.org/10.1089/ars.2016.6930. [Epub ahead of print].
  105. 105.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Carver JR, Schuster SJ, Glick JH. Doxorubicin cardiotoxicity in the elderly: old drugs and new opportunities. J Clin Oncol. 2008;26:3122–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Lancellotti P, Anker SD, Donal E, Edvardsen T, Popescu BA, Farmakis D, et al. EACVI/HFA cardiac oncology toxicity registry in breast cancer patients: rationale, study design, and methodology (EACVI/HFA cot registry)--Eurobservational research program of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging. 2015;16:466–70.PubMedCrossRefGoogle Scholar
  108. 108.
    Pepe A, Pizzino F, Gargiulo P, Perrone-Filardi P, Cadeddu C, Mele D, et al. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology. J Cardiovasc Med. 2016;17(Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection):e45–54.CrossRefGoogle Scholar
  109. 109.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1063–93.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zito C, Longobardo L, Cadeddu C, Monte I, Novo G, Dell'Oglio S, et al. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: role of echocardiography. J Cardiovasc Med. 2016;17(Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection):e35–44.CrossRefGoogle Scholar
  111. 111.
    Ong DS, Scherrer-Crosbie M, Coelho-Filho O, Francis SA, Neilan TG. Imaging methods for detection of chemotherapy-associated cardiotoxicity and dysfunction. Expert Rev Cardiovasc Ther. 2014;12:487–97.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Hare JL, Brown JK, Leano R, Jenkins C, Woodward N, Marwick TH. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J. 2009;158:294–301.PubMedCrossRefGoogle Scholar
  113. 113.
    Ho E, Brown A, Barrett P, Morgan RB, King G, Kennedy MJ, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart. 2010;96:701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Pizzino F, Vizzari G, Qamar R, Bomzer C, Carerj S, Zito C, Khandheria BK. Multimodality imaging in cardiooncology. J Oncol. 2015;2015:263950.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor ii-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57:2263–70.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Jassal DS, Han SY, Hans C, Sharma A, Fang T, Ahmadie R, et al. Utility of tissue doppler and strain rate imaging in the early detection of trastuzumab and anthracycline mediated cardiomyopathy. J Am Soc Echocardiogr. 2009;22:418–24.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Markman TM, Markman M. Cardiotoxicity of antineoplastic agents: what is the present and future role for imaging? Curr Oncol Rep. 2014;16:396.PubMedCrossRefGoogle Scholar
  118. 118.
    Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH. Cardiac mri in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6:1080–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Ky B, Carver JR. Biomarker approach to the detection and cardioprotective strategies during anthracycline chemotherapy. Heart Fail Clin. 2011;7:323–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis. 2010;53:121–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Novo G, Cadeddu C, Sucato V, Pagliaro P, Romano S, Tocchetti CG, et al. Role of biomarkers in monitoring antiblastic cardiotoxicity. J Cardiovasc Med. 2016;17(Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection):e27–34.CrossRefGoogle Scholar
  122. 122.
    Oztop I, Gencer M, Okan T, Yaren A, Altekin E, Turker S, et al. Evaluation of cardiotoxicity of a combined bolus plus infusional 5-fluorouracil/folinic acid treatment by echocardiography, plasma troponin i level, qt interval and dispersion in patients with gastrointestinal system cancers. Jpn J Clin Oncol. 2004;34:262–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin i in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–54.PubMedCrossRefGoogle Scholar
  124. 124.
    Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin i evaluation. J Clin Oncol. 2010;28:3910–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.PubMedCrossRefGoogle Scholar
  126. 126.
    Onitilo AA, Engel JM, Stankowski RV, Liang H, Berg RL, Doi SA. High-sensitivity c-reactive protein (hs-crp) as a biomarker for trastuzumab-induced cardiotoxicity in her2-positive early-stage breast cancer: a pilot study. Breast Cancer Res Treat. 2012;134:291–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Dessi M, Madeddu C, Piras A, Cadeddu C, Antoni G, Mercuro G, et al. Long-term, up to 18 months, protective effects of the angiotensin ii receptor blocker telmisartan on epirubicin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus. 2013;2:198.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Dessi M, Piras A, Madeddu C, Cadeddu C, Deidda M, Massa E, Antoni G, Mantovani G, Mercuro G. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction. Exp Therapeut Med. 2011;2:1003–9.CrossRefGoogle Scholar
  129. 129.
    Peetz D, Post F, Schinzel H, Schweigert R, Schollmayer C, Steinbach K, et al. Glycogen phosphorylase bb in acute coronary syndromes. Clin Chem Lab Med. 2005;43:1351–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Stejskal D, Lacnak B, Jedelsky L, Stepanova L, Proskova J, Solichova P, et al. Use of glycogen phosphorylase bb measurement with poct in the diagnosis of acute coronary syndromes. A comparison with the elisa method. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151:247–9.PubMedCrossRefGoogle Scholar
  131. 131.
    O'Donoghue M, de Lemos JA, Morrow DA, Murphy SA, Buros JL, Cannon CP, et al. Prognostic utility of heart-type fatty acid binding protein in patients with acute coronary syndromes. Circulation. 2006;114:550–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Tian S, Hirshfield KM, Jabbour SK, Toppmeyer D, Haffty BG, Khan AJ, et al. Serum biomarkers for the detection of cardiac toxicity after chemotherapy and radiation therapy in breast cancer patients. Front Oncol. 2014;4:277.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120:502–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Reriani MK, Lerman LO, Lerman A. Endothelial function as a functional expression of cardiovascular risk factors. Biomark Med. 2010;4:351–60.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Eckman DM, Stacey RB, Rowe R, D'Agostino R Jr, Kock ND, Sane DC, et al. Weekly doxorubicin increases coronary arteriolar wall and adventitial thickness. PLoS One. 2013;8:e57554.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Jones LM, Stoner L, Brown C, Baldi C, McLaren B. Cardiovascular disease among breast cancer survivors: the call for a clinical vascular health toolbox. Breast Cancer Res Treat. 2013;142:645–53.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Murata T, Yamawaki H, Hori M, Sato K, Ozaki H, Karaki H. Chronic vascular toxicity of doxorubicin in an organ-cultured artery. Br J Pharmacol. 2001;132:1365–73.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–78.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Drafts BC, Twomley KM, D'Agostino R Jr, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Moreo A, Vallerio P, Ricotta R, Stucchi M, Pozzi M, Musca F, et al. Effects of cancer therapy targeting vascular endothelial growth factor receptor on central blood pressure and cardiovascular system. Am J Hypertens. 2016;29:158–62.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Mele D, Nardozza M, Spallarossa P, Frassoldati A, Tocchetti CG, Cadeddu C, et al. Current views on anthracycline cardiotoxicity. Heart Fail Rev. 2016;21:621–34.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Madonna R. Early diagnosis and prediction of anticancer drug-induced cardiotoxicity: from cardiac imaging to “omics” technologies. Rev Esp Cardiol (Engl Ed). 2017;70:576–82.CrossRefGoogle Scholar
  144. 144.
    Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom. 2011;21:440–6.CrossRefGoogle Scholar
  145. 145.
    Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dube MP, Al-Saloos H, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012;30:1422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Aminkeng F, Ross CJ, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82:683–95.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, et al. Nad(p)h oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–62.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Cascales A, Pastor-Quirante F, Sanchez-Vega B, Luengo-Gil G, Corral J, Ortuno-Pacheco G, et al. Association of anthracycline-related cardiac histological lesions with nadph oxidase functional polymorphisms. Oncologist. 2013;18:446–53.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Lubieniecka JM, Graham J, Heffner D, Mottus R, Reid R, Hogge D, Grigliatti TA, Riggs WK. A discovery study of daunorubicin induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes p450 oxidoreductase polymorphisms as a potential risk factor. Front Genet. 2013;4:231.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Bains OS, Szeitz A, Lubieniecka JM, Cragg GE, Grigliatti TA, Riggs KW, et al. A correlation between cytotoxicity and reductase-mediated metabolism in cell lines treated with doxorubicin and daunorubicin. J Pharmacol Exper Therapeut. 2013;347:375–87.CrossRefGoogle Scholar
  151. 151.
    Andreadou I, Papaefthimiou M, Zira A, Constantinou M, Sigala F, Skaltsounis AL, et al. Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural antioxidant oleuropein. NMR Biomed. 2009;22:585–92.PubMedCrossRefGoogle Scholar
  152. 152.
    Andreadou I, Mikros E, Ioannidis K, Sigala F, Naka K, Kostidis S, et al. Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J Mol Cell Cardiol. 2014;69:4–16.PubMedCrossRefGoogle Scholar
  153. 153.
    Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer. 1967;20:333–53.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Cong W, Liang Q, Li L, Shi J, Liu Q, Feng Y, et al. Metabonomic study on the cumulative cardiotoxicity of a pirarubicin liposome powder. Talanta. 2012;89:91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Li Y, Ju L, Hou Z, Deng H, Zhang Z, Wang L, et al. Screening, verification, and optimization of biomarkers for early prediction of cardiotoxicity based on metabolomics. J Proteome Res. 2015;14:2437–45.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Wang JX, Zhang XJ, Feng C, Sun T, Wang K, Wang Y, et al. Microrna-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis. 2015;6:e1677.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Roca-Alonso L, Castellano L, Mills A, Dabrowska AF, Sikkel MB, Pellegrino L, et al. Myocardial mir-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death Dis. 2015;6:e1754.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Tony H, Yu K, Qiutang Z. Microrna-208a silencing attenuates doxorubicin induced myocyte apoptosis and cardiac dysfunction. Oxidative Med Cell Longev. 2015;2015:597032.CrossRefGoogle Scholar
  159. 159.
    Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. Micrornas and epigenetics. FEBS J. 2011;278:1598–609.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Horie T, Ono K, Nishi H, Nagao K, Kinoshita M, Watanabe S, et al. Acute doxorubicin cardiotoxicity is associated with mir-146a-induced inhibition of the neuregulin-erbb pathway. Cardiovasc Res. 2010;87:656–64.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Deidda M, Madonna R, Mango R, Pagliaro P, Bassareo PP, Cugusi L, et al. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. J Cardiovasc Med. 2016;17(Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection):e76–83.CrossRefGoogle Scholar
  162. 162.
    Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, et al. Mir-29s: a family of epi-mirnas with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6:12837–61.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–e90.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SL, Kohli M. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clinic Pro. 2014;89:1287–306.CrossRefGoogle Scholar
  165. 165.
    Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63:809–16.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102:596–604.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Milan A, Puglisi E, Ferrari L, Bruno G, Losano I, Veglio F. Arterial hypertension and cancer. Intl J Cancer. 2014;134:2269–77.CrossRefGoogle Scholar
  169. 169.
    Steingart RM, Bakris GL, Chen HX, Chen MH, Force T, Ivy SP, et al. Management of cardiac toxicity in patients receiving vascular endothelial growth factor signaling pathway inhibitors. Am Heart J. 2012;163:156–63.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Qi WX, He AN, Shen Z, Yao Y. Incidence and risk of hypertension with a novel multi-targeted kinase inhibitor axitinib in cancer patients: a systematic review and meta-analysis. Br J Clin Pharmacol. 2013;76:348–57.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:47.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Moore RA, Adel N, Riedel E, Bhutani M, Feldman DR, Tabbara NE, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol. 2011;29:3466–73.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rosalinda Madonna
    • 1
  • Francesca Macaione
    • 2
  • Peter Ferdinandy
    • 3
  1. 1.“SS. Annunziata” Hospital, University Cardiology, Center of Aging Sciences and Translational Medicine – CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” UniversityChietiItaly
  2. 2.Biomedical Department of Internal Medicine and Specialities (DIBIMIS), University of PalermoPalermoItaly
  3. 3.Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapestHungary

Personalised recommendations