Advertisement

Pulmonary Hypertension Induced by Anticancer Drugs

  • Valentina Mercurio
  • Giulio Agnetti
  • Pasquale Pagliaro
  • Carlo G. Tocchetti
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Pulmonary vascular damage is a rare but possible complication of treatment with chemotherapeutic agents or bone marrow transplantation. The main clinical manifestations involving the pulmonary vessels are the development of pulmonary arterial hypertension or pulmonary veno-occlusive disease. In this chapter we describe the main mechanisms underlying the development of this form of toxicity, the screening algorithm, and its clinical management.

Keywords

Pulmonary hypertension Pulmonary veno-occlusive disease Bone marrow transplantation Alkylating agents Mitomycin C and bleomycin Tyrosine kinase inhibitor Dasatinib 

References

  1. 1.
    Limsuwan A, Pakakasama S, Rochanawutanon M, Hong-eng S. Pulmonary arterial hypertension after childhood cancer therapy and bone marrow transplantation. Cardiology. 2006;105:188–94.CrossRefGoogle Scholar
  2. 2.
    Ranchoux B, Gunther S, Quarck R, Chaumais MC, Dorfmuller P, Antigny F, et al. Chemotherapy-induced pulmonary hypertension: role of alkylating agents. Am J Pathol. 2015;185:356–71.CrossRefGoogle Scholar
  3. 3.
    Montani D, Bergot E, Gunther S, Savale L, Bergeron A, Bourdin A, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125:2128–37.CrossRefGoogle Scholar
  4. 4.
    Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.CrossRefGoogle Scholar
  5. 5.
    Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997;336:111–7.CrossRefGoogle Scholar
  6. 6.
    Guilpain P, Montani D, Damaj G, Achouh L, Lefrere F, Le Pavec J, et al. Pulmonary hypertension associated with myeloproliferative disorders: a retrospective study of ten cases. Respiration. 2008;76:295–302.CrossRefGoogle Scholar
  7. 7.
    Adir Y, Humbert M. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir J. 2010;35:1396–406.CrossRefGoogle Scholar
  8. 8.
    Montani D, Price LC, Dorfmuller P, Achouh L, Jais X, Yaici A, et al. Pulmonary veno-occlusive disease. Eur Respir J. 2009;33:189–200.CrossRefGoogle Scholar
  9. 9.
    Koyama M, Yano T, Kikuchi K, Mizuno M, Nagano N, Hashimoto A, et al. Favorable response to an endothelin receptor antagonist in mitomycin-induced pulmonary veno-occlusive disease with pulmonary capillary hemangiomatosis. Intl J Cardiol. 2016;212:245–7.CrossRefGoogle Scholar
  10. 10.
    Botros L, Van Nieuw Amerongen GP, Vonk Noordegraaf A, Bogaard HJ. Recovery from mitomycin-induced pulmonary arterial hypertension. Ann Am Thoracic Soc. 2014;11:468–70.CrossRefGoogle Scholar
  11. 11.
    Perros F, Gunther S, Ranchoux B, Godinas L, Antigny F, Chaumais MC, et al. Mitomycin-induced pulmonary veno-occlusive disease: evidence from human disease and animal models. Circulation. 2015;132:834–47.CrossRefGoogle Scholar
  12. 12.
    Joselson R, Warnock M. Pulmonary veno-occlusive disease after chemotherapy. Hum Pathol. 1983;14:88–91.CrossRefGoogle Scholar
  13. 13.
    Knight BK, Rose AG. Pulmonary veno-occlusive disease after chemotherapy. Thorax. 1985;40:874–5.CrossRefGoogle Scholar
  14. 14.
    Swift GL, Gibbs A, Campbell IA, Wagenvoort CA, Tuthill D. Pulmonary veno-occlusive disease and hodgkin's lymphoma. Eur Respir J. 1993;6:596–8.PubMedGoogle Scholar
  15. 15.
    Salzman D, Adkins DR, Craig F, Freytes C, LeMaistre CF. Malignancy-associated pulmonary veno-occlusive disease: report of a case following autologous bone marrow transplantation and review. Bone Marrow Transplant. 1996;18:755–60.PubMedGoogle Scholar
  16. 16.
    Kuga T, Kohda K, Hirayama Y, Matsumoto S, Nakazawa O, Ando M, et al. Pulmonary veno-occlusive disease accompanied by microangiopathic hemolytic anemia 1 year after a second bone marrow transplantation for acute lymphoblastic leukemia. Intl J Hematol. 1996;64:143–50.CrossRefGoogle Scholar
  17. 17.
    Troussard X, Bernaudin JF, Cordonnier C, Fleury J, Payen D, Briere J, et al. Pulmonary veno-occlusive disease after bone marrow transplantation. Thorax. 1984;39:956–7.CrossRefGoogle Scholar
  18. 18.
    Yan L, Chen X, Talati M, Nunley BW, Gladson S, Blackwell T, et al. Bone marrow-derived cells contribute to the pathogenesis of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2016;193:898–909.CrossRefGoogle Scholar
  19. 19.
    Bradner WT. Mitomycin c: A clinical update. Cancer Treat Rev. 2001;27:35–50.CrossRefGoogle Scholar
  20. 20.
    Doll DC, Weiss RB, Issell BF. Mitomycin: ten years after approval for marketing. J Clin Oncol. 1985;3:276–86.CrossRefGoogle Scholar
  21. 21.
    Wu KY, Wang HZ, Hong SJ. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol Vis. 2008;14:1705–12.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Su C, Sui T, Zhang X, Zhang H, Cao X. Effect of topical application of mitomycin-c on wound healing in a postlaminectomy rat model: an experimental study. Eur J Pharmacol. 2012;674:7–12.CrossRefGoogle Scholar
  23. 23.
    Patil N, Paulose RM, Udupa KS, Ramakrishna N, Ahmed T. Pulmonary toxicity of bleomycin - a case series from a tertiary care center in southern India. J Clin Diagn Res. 2016;10:FR01–3.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001;120:617–24.CrossRefGoogle Scholar
  25. 25.
    Ohtani T, Nakamura T, Toda K, Furukawa F. Cyclophosphamide enhances tnf-alpha-induced apoptotic cell death in murine vascular endothelial cell. FEBS Lett. 2006;580:1597–600.CrossRefGoogle Scholar
  26. 26.
    Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, et al. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res. 2004;64:1570–4.CrossRefGoogle Scholar
  27. 27.
    Dumitrescu D, Seck C, ten Freyhaus H, Gerhardt F, Erdmann E, Rosenkranz S. Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukaemia. Eur Respir J. 2011;38:218–20.CrossRefGoogle Scholar
  28. 28.
    Rasheed W, Flaim B, Seymour JF. Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk Res. 2009;33:861–4.CrossRefGoogle Scholar
  29. 29.
    Mattei D, Feola M, Orzan F, Mordini N, Rapezzi D, Gallamini A. Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted cml patient. Bone Marrow Transplant. 2009;43:967–8.CrossRefGoogle Scholar
  30. 30.
    Orlandi EM, Rocca B, Pazzano AS, Ghio S. Reversible pulmonary arterial hypertension likely related to long-term, low-dose dasatinib treatment for chronic myeloid leukaemia. Leuk Res. 2012;36:e4–6.CrossRefGoogle Scholar
  31. 31.
    Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.CrossRefGoogle Scholar
  32. 32.
    Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of dasision: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34:2333–40.CrossRefGoogle Scholar
  33. 33.
    Hantschel O, Rix U, Superti-Furga G. Target spectrum of the bcr-abl inhibitors imatinib, nilotinib and dasatinib. Leukemia Lymphoma. 2008;49:615–9.CrossRefGoogle Scholar
  34. 34.
    Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med. 1988;319:990–8.CrossRefGoogle Scholar
  35. 35.
    Calabretta B, Perrotti D. The biology of cml blast crisis. Blood. 2004;103:4010–22.CrossRefGoogle Scholar
  36. 36.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the abl tyrosine kinase on the growth of bcr-abl positive cells. Nat Med. 1996;2:561–6.CrossRefGoogle Scholar
  37. 37.
    Aguilera DG, Tsimberidou AM. Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag. 2009;5:281–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Guignabert C, Montani D. Key roles of src family tyrosine kinases in the integrity of the pulmonary vascular bed. Eur Respir J. 2013;41:3–4.CrossRefGoogle Scholar
  39. 39.
    Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, et al. Discovery of n-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (bms-354825), a dual src/abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47:6658–61.CrossRefGoogle Scholar
  40. 40.
    Barst RJ. Pdgf signaling in pulmonary arterial hypertension. J Clin Invest. 2005;115:2691–4.CrossRefGoogle Scholar
  41. 41.
    Balasubramaniam V, Le Cras TD, Ivy DD, Grover TR, Kinsella JP, Abman SH. Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am J Phys. 2003;284:L826–33.CrossRefGoogle Scholar
  42. 42.
    Eddahibi S, Humbert M, Sediame S, Chouaid C, Partovian C, Maitre B, et al. Imbalance between platelet vascular endothelial growth factor and platelet-derived growth factor in pulmonary hypertension. Effect of prostacyclin therapy. Am J Respir Crit Care Med. 2000;162:1493–9.CrossRefGoogle Scholar
  43. 43.
    Montani D, Perros F, Gambaryan N, Girerd B, Dorfmuller P, Price LC, et al. C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;184:116–23.CrossRefGoogle Scholar
  44. 44.
    Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by pdgf inhibition. J Clin Invest. 2005;115:2811–21.CrossRefGoogle Scholar
  45. 45.
    Hoeper MM, Barst RJ, Bourge RC, Feldman J, Frost AE, Galie N, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized impres study. Circulation. 2013;127:1128–38.CrossRefGoogle Scholar
  46. 46.
    Frost AE, Barst RJ, Hoeper MM, Chang HJ, Frantz RP, Fukumoto Y, et al. Long-term safety and efficacy of imatinib in pulmonary arterial hypertension. J Heart Lung Transplant. 2015;34:1366–75.CrossRefGoogle Scholar
  47. 47.
    Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the bcr-abl inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63.CrossRefGoogle Scholar
  48. 48.
    Baumgart B, Guha M, Hennan J, Li J, Woicke J, Simic D, et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chem Pharmacol. 2017;79:711–23.CrossRefGoogle Scholar
  49. 49.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.CrossRefGoogle Scholar
  50. 50.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685–713.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valentina Mercurio
    • 1
  • Giulio Agnetti
    • 2
    • 3
  • Pasquale Pagliaro
    • 4
  • Carlo G. Tocchetti
    • 5
  1. 1.Division of Pulmonary and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.DIBINEMUniversity of BolognaBolognaItaly
  4. 4.Clinical and Biological SciencesAOU San Luigi GonzagaOrbassanoItaly
  5. 5.Department of Translational Medical Sciences, Federico II UniversityNaplesItaly

Personalised recommendations