Advertisement

Management of QT Prolongation Induced by Anticancer Drugs

  • Nicola Maurea
  • Rolando Paciello
  • Carmela Coppola
  • Dimitrios Farmakis
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Recent advances in the field of cancer therapy have significantly improved the prognosis of oncologic patients; however, side effects associated with antineoplastic treatment remain the main cause of the high mortality of cancer survivors. The most serious adverse effect of anticancer therapy is cardiovascular toxicity, i.e. QT prolongation, arrhythmias, myocardial ischemia, stroke, hypertension, thromboembolism, left ventricular dysfunction, and heart failure, which can occur even in patients undergoing targeted therapy. In cases of QT prolongation, which is favoured by electrolyte abnormalities, low levels of serum potassium and antineoplastic drugs, suspension of the antineoplastic treatment and correction of the electrolyte abnormalities (hypokalaemia, hypomagnesaemia, hypocalcaemia) can help to restore normal conditions. Thereafter, the patient’s cardiac functions should be monitored. QT prolongation can also cause potentially fatal cardiac arrhythmias and is treated with intravenous magnesium sulphate after electrical cardioversion.

Keywords

QT prolongation Anticancer drugs Target therapy, Cardiotoxicity, Immunotherapy 

Notes

Acknowledgement

The authors thank Jean Ann Gilder (Scientific Communication srl., Naples, Italy) for editing the text.

References

  1. 1.
    Strevel EL, Ing DJ, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25:3362–71.CrossRefGoogle Scholar
  2. 2.
    Taran LM, Szilagyi N. The duration of the electrical systole (Q-T) in acute rheumatic carditis in children. Am Heart J. 1947;33:14–26.CrossRefGoogle Scholar
  3. 3.
    Fridericia LS. The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. 1920. Ann Noninvasive Electrocardiol. 2003;8:343–51.CrossRefGoogle Scholar
  4. 4.
    Sagie A, Larson MG, Goldberg RJ, Bengtson JR, Levy D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70:797–801.CrossRefGoogle Scholar
  5. 5.
    Desai M, Li L, Desta Z, Malik M, Flockhart D. Variability of heart rate correction methods for the QT interval. Br J Clin Pharmacol. 2003;55:511–7.CrossRefGoogle Scholar
  6. 6.
    Guidance for Industry: E14 Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Available at: https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073153.pdf.
  7. 7.
    National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v 4.03. Available at: https://nciterms.nci.nih.gov/ncitbrowser/pages/vocabulary.jsf?dictionary=CTCAE&version=4.03
  8. 8.
    Li EC, Esterly JS, Pohl S, Scott SD, McBride BF. Drug-induced QT-interval prolongation: considerations for clinicians. Pharmacotherapy. 2010;30:684–701.CrossRefGoogle Scholar
  9. 9.
    Yeh ET. Onco-cardiology: the time has come. Tex Heart Inst J. 2011;38(3):246–7.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Coppola C, Rienzo A, Piscopo G, Barbieri A, Arra C, Maurea N. Management of QT prolongation induced by anti-cancer drugs: Target therapy and old agents. Different algorithms for different drugs. Cancer Treat Rev. 2018;63:9.CrossRefGoogle Scholar
  11. 11.
    CredibleMeds. [website] QT drugs list. Available at https://crediblemeds.org.
  12. 12.
    Maurea N, Spallarossa P, Cadeddu C, Madonna R, Mele D, Monte I, et al. A recommended practical approach to the management of target therapy and angiogenesis inhibitors cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian Society of Cardiology. J Cardiovasc Med (Hagerstown). 2016;17 Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection:e93–104.CrossRefGoogle Scholar
  13. 13.
    Hasinoff BB. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol Appl Pharmacol. 2010;244:190–5.CrossRefGoogle Scholar
  14. 14.
    Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36:295–316.CrossRefGoogle Scholar
  15. 15.
    US FDA drug approval summary for vandetanib in medullary thyroid cancer. Available online at: https://www.accessdata.fda.gov/scripts/cder/daf/.
  16. 16.
    Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7:e30353.CrossRefGoogle Scholar
  17. 17.
    FDA approved manufacter’s package insert for vantetanib. Available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=4dc7f0af-77fb-4eec-46b9-dd1c2dcb4525.
  18. 18.
    Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60:222–43.CrossRefGoogle Scholar
  19. 19.
    Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15:4220–7.CrossRefGoogle Scholar
  20. 20.
    Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28:475–80.CrossRefGoogle Scholar
  21. 21.
    Heath EI, Infante J, Lewis LD, Luu T, Stephenson J, Tan AR, et al. A randomized, double-blind, placebo-controlled study to evaluate the effect of repeated oral doses of pazopanib on cardiac conduction in patients with solid tumors. Cancer Chemother Pharmacol. 2013;71:565–73.CrossRefGoogle Scholar
  22. 22.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.CrossRefGoogle Scholar
  23. 23.
    Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.CrossRefGoogle Scholar
  24. 24.
    Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.CrossRefGoogle Scholar
  25. 25.
    Girardi F, Franceschi E, Brandes AA. Cardiovascular safety of VEGF-targeting therapies: current evidence and handling strategies. Oncologist. 2010;15:683–94.CrossRefGoogle Scholar
  26. 26.
    Lenihan DJ, Kowey PR. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist. 2013;18(8):900–8.CrossRefGoogle Scholar
  27. 27.
    Bello CL, Mulay M, Huang X, Patyna S, Dinolfo M, Levine S, et al. Electrocardiographic characterization of the QTc interval in patients with advanced solid tumors: pharmacokinetic- pharmacodynamic evaluation of sunitinib. Clin Cancer Res. 2009;15:7045–52.CrossRefGoogle Scholar
  28. 28.
    Hutson TE, Figlin RA, Kuhn JG, Motzer RJ. Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. Oncologist. 2008;13:1084–96.CrossRefGoogle Scholar
  29. 29.
    Tolcher AW, Appleman LJ, Shapiro GI, Mita AC, Cihon F, Mazzu A, et al. A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer. Cancer Chemother Pharmacol. 2011;67:751–64.CrossRefGoogle Scholar
  30. 30.
    AIFA. Agenzia Italiana del Farmaco. Available at: http://www.agenziafarmaco.gov.it
  31. 31.
    Lee HA, Kim EJ, Hyun SA, Park SG, Kim KS. Electrophysiological effects of the anti-cancer drug lapatinib on cardiac repolarization. Basic Clin Pharmacol Toxicol. 2010;107:614–8.CrossRefGoogle Scholar
  32. 32.
    Sprycel (dasatinib) prescribing information. Princeton: Bristol-Myers Squibb Company. 2006.Google Scholar
  33. 33.
    DailyMed. [website]. FDA guidances and drug list. Available at: https://dailymed.nlm.nih.gov/dailymed/index.cfm
  34. 34.
    Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13:2318–22.CrossRefGoogle Scholar
  35. 35.
    Woo S, Gardner ER, Chen X, Ockers SB, Baum CE, Sissung TM, et al. Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009;15:1496–503.CrossRefGoogle Scholar
  36. 36.
    Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12:3762–73.CrossRefGoogle Scholar
  37. 37.
    Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–15.CrossRefGoogle Scholar
  38. 38.
    Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12:3997–4003.CrossRefGoogle Scholar
  39. 39.
    Bailey H, Stenehjem DD, Sharma S. Panobinostat for the treatment of multiple myeloma: the evidence to date. J Blood Med. 2015;6:269–76.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Doyle AC. Notes of a case of leukocythaemia. Lancet. 1882;119:490.CrossRefGoogle Scholar
  41. 41.
    Goldsmith S, From AH. Arsenic-induced atypical ventricular tachycardia. N Engl J Med. 1980;303:1096–8.CrossRefGoogle Scholar
  42. 42.
    Little RE, Kay GN, Cavender JB, Epstein AE, Plumb VJ. Torsade de pointes and T-U wave alternans associated with arsenic poisoning. Pacing Clin Electrophysiol. 1990;13:164–70.CrossRefGoogle Scholar
  43. 43.
    St Petery J, Gross C, Victorica BE. Ventricular fibrillation caused by arsenic poisoning. Am J Dis Child. 1970;120:367–71.PubMedGoogle Scholar
  44. 44.
    Weinberg SL. The electrocardiogram in acute arsenic poisoning. Am Heart J. 1960;60:971–5.CrossRefGoogle Scholar
  45. 45.
    Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21:3609–15.CrossRefGoogle Scholar
  46. 46.
    Drolet B, Simard C, Roden DM. Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents. Circulation. 2004;109:26–9.CrossRefGoogle Scholar
  47. 47.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.CrossRefGoogle Scholar
  48. 48.
    Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.CrossRefGoogle Scholar
  49. 49.
    Wei H, Du F, Lu Y, Wei J, Dong X. Successful ceritinib treatment in a man with MPE and an ALK fusion gene mutation after multiple treatments. Springerplus. 2016;5(1):2083.CrossRefGoogle Scholar
  50. 50.
    Ou SH, Tong WP, Azada M, Siwak-Tapp C, Dy J, Stiber JA. Heart rate decrease during crizotinib treatment and potential correlation to clinical response. Cancer. 2013;119:1969–75.CrossRefGoogle Scholar
  51. 51.
    van Noord C, Eijgelsheim M, Stricker BH. Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol. 2010;70(1):16–23.CrossRefGoogle Scholar
  52. 52.
    Diemberger I, Massaro G, Cubelli M, Rubino D, Quercia S, Martignani C, et al. Repolarization effects of multiple-cycle chemotherapy and predictors of QTc prolongation: a prospective female cohort study on >2000 ECGs. Eur J Clin Pharmacol. 2015;71(8):1001–9.CrossRefGoogle Scholar
  53. 53.
    Cuni R, Parrini I, Asteggiano R, Conte MR. Targeted cancer therapies and QT interval prolongation: unveiling the mechanisms underlying arrhythmic complications and the need for risk stratification strategies. Clin Drug Investig. 2017;37(2):121–34.CrossRefGoogle Scholar
  54. 54.
    Chalmers AJ. The potential role and application of ParP inhibitors in cancer treatment. Br Med Bull. 2009;89:23–40.CrossRefGoogle Scholar
  55. 55.
    Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.CrossRefGoogle Scholar
  56. 56.
    Dockery LE, Gunderson CC, Moore KN. Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther. 2017;10:3029–37.CrossRefGoogle Scholar
  57. 57.
    Balasubramaniam S, Beaver JA, Horton S, Fernandes LL, Tang S, Horne HN, et al. FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA mutation-associated advanced ovarian cancer. Clin Cancer Res. 2017;23(23):7165–70.CrossRefGoogle Scholar
  58. 58.
    Caruso D, Papa A, Tomao S, Vici P, Panici PB, Tomao F. Niraparib in ovarian cancer: results to date and clinical potential. Ther Adv Med Oncol. 2017;9(9):579–88.CrossRefGoogle Scholar
  59. 59.
    Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64.CrossRefGoogle Scholar
  60. 60.
    Munasinghe W, Stodtmann S, Tolcher A, Calvo E, Gordon M, Jalving M, et al. Effect of veliparib (ABT-888) on cardiac repolarization in patients with advanced solid tumors: a randomized, placebo-controlled crossover study. Cancer Chemother Pharmacol. 2016;78(5):1003–11.CrossRefGoogle Scholar
  61. 61.
    Plummer R, Stephens P, Aissat-Daudigny L, Cambois A, Moachon G, Brown PD, et al. Phase 1 dose-escalation study of the PARP inhibitor CEP-9722 as monotherapy or in combination with temozolomide in patients with solid tumors. Cancer Chemother Pharmacol. 2014;74(2):257–65.CrossRefGoogle Scholar
  62. 62.
    Swaisland H, Plummer R, So K, Garnett S, Bannister W, Fabre MA, et al. Olaparib does not cause clinically relevant QT/QTc interval prolongation in patients with advanced solid tumours: results from two phase I studies. Cancer Chemother Pharmacol. 2016;78(4):775–84.CrossRefGoogle Scholar
  63. 63.
    Doi T, Hewes B, Kakizume T, Tajima T, Ishikawa N, Yamada Y. Phase 1 study of single-agent ribociclib in Japanese patients with advanced solid tumors. Cancer Sci. 2018;109(1):193–8.CrossRefGoogle Scholar
  64. 64.
    Sonke GS, Hart LL, Campone M, Erdkamp F, Janni W, Verma S, et al. Ribociclib with letrozole vs letrozole alone in elderly patients with hormone receptor-positive, HER2-negative breast cancer in the randomized MONALEESA-2 trial. Breast Cancer Res Treat. 2018;167(3):659–69.  https://doi.org/10.1007/s10549-017-4523-y.CrossRefPubMedGoogle Scholar
  65. 65.
    Therapy Management Guide-Kisqali (Ribociclib). NOVARTIS. 2017.Google Scholar
  66. 66.
    FDA Approves Palbociclib for Metastatic Breast Cancer. OncLive. 3 Feb 2015.Google Scholar
  67. 67.
    Pfizer Receives U.S. FDA Accelerated Approval of IBRANCE (palbociclib). Pfizer. 3 Feb 2015.Google Scholar
  68. 68.
    Spring LM, Zangardi ML, Moy B, Bardia A. Clinical management of potential toxicities and drug interactions related to cyclin-dependent kinase 4/6 inhibitors in breast cancer: practical considerations and recommendations. Oncologist. 2017;22(9):1039–48.CrossRefGoogle Scholar
  69. 69.
    Kim ES, Scott LJ. Palbociclib: a review in HR-positive, HER2-negative, advanced or metastatic breast cancer. Target Oncol. 2017;12(3):373–83.CrossRefGoogle Scholar
  70. 70.
    Barroso-Sousa R, Shapiro GI, Tolaney SM. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care (Basel). 2016;11(3):167–73.CrossRefGoogle Scholar
  71. 71.
    Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23(17):5218–24.CrossRefGoogle Scholar
  72. 72.
    Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicola Maurea
    • 1
  • Rolando Paciello
    • 1
    • 2
  • Carmela Coppola
    • 1
  • Dimitrios Farmakis
    • 3
  1. 1.Division of CardiologyIstituto Nazionale Tumori - IRCCS - Fondazione G. PascaleNaplesItaly
  2. 2.VIB Nanobody CoreVrije Universiteit BrusselBrusselsBelgium
  3. 3.Department of CardiologyCardio-Oncology Clinic, Heart Failure Unit, Attikon University Hospital, National and Kapodistrian University of AthensAthensGreece

Personalised recommendations