Advertisement

Genomic Approaches for Climate Resilience Breeding in Oats

  • Julio Isidro-SánchezEmail author
  • Elena Prats
  • Catherine Howarth
  • Tim Langdon
  • Gracia Montilla-Bascón
Chapter
  • 66 Downloads

Abstract

Oat (Avena sativa L.), ranking sixth in world cereal production, is primarily produced as a multipurpose crop for grain, pasture, and forage or as a rotation crop in many parts of the world. Recent research has elevated its potential dietary value for human nutrition and health care. Oats are well adapted to a wide range of soil types and can perform on acid soils. World oat production is concentrated between latitudes 35–65º N, and 20–46º S. Avena genomes are large and complex, in the range of 4.12–12.6 Gb. Oat productivity is affected by many diseases, although crown rust (Puccinia coronate f. sp. avenae) and stem rust (Puccinia graminis f. sp. avenae) are the key diseases worldwide. The focus of this chapter is to review the major developments and their impacts on oat breeding, especially on the challenges posed by climate or environmental changes (biotic and abiotic stresses mainly) for oat cultivation. Next-generation breeding tools will help to develop approaches to genetically improve and manipulate oat which would aid significantly in oat enhancement efforts. Although, oat biotechnology has been advanced at a similar pace as the rest of cereals, it lags still behind. More genomic tools, from genomic assisted breeding to genome editing tools are needed to improve the resources to improve oats under climate change in the next few decades.

Keywords

Oat Resilience B-glucans Genomic assisted breeding Disease resistance 

References

  1. AACC I (1999) American Association of Cereals Chemists International. http://www.aaccnet.org/
  2. Ahmad M, Zaffar G, Razvi SM, Mir SD, Rather MA (2013) Stability properties of certain oats genotypes for major grain yielding characteristics. Int J Plant Breed Genet:1–6Google Scholar
  3. Anderson JW (2003) Whole grains protect against atherosclerotic cardiovascular disease. Proc Nutr Soc 62:135–142.  https://doi.org/10.1079/pns2002222CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson W, Johansen C, Siddique KHM (2016) Addressing the yield gap in rainfed crops: a review. Agron Sustain Dev 36:18.  https://doi.org/10.1007/s13593-015-0341-yCrossRefGoogle Scholar
  5. Asoro FG, Newell MA, Beavis WD, Scott M, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome J 4:132.  https://doi.org/10.3835/plantgenome2011.02.0007
  6. Asoro FG, Newell MA, Beavis WD, Scott M, Jannink JL (2013) Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci 53:1894.  https://doi.org/10.2135/cropsci2012.09.0526CrossRefGoogle Scholar
  7. Badaeva ED, Shelukhina OY, Goryunova SV, Loskutov IG, Pukhalskiy VA (2010) Phylogenetic relationships of tetraploid AB genome Avena species evaluated by means of cytogenetic (C-banding and FISH) and RAPD analyses. J Bot.  https://doi.org/10.1155/2010/742307CrossRefGoogle Scholar
  8. Bai Y, Pavan S, Zheng Z, Zappel N, Reinstaedler A (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant-Microbe Interact 21:30–39.  https://doi.org/10.1094/mpmi-21-1-0030CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barbosa-Neto JF, Siripoonwiwat W, O’donoughue LS, Gray SM, Smith DM, Kolb FL, Gourmet C, Brown CM, Sorrells ME (2000) Chromosomal regions associated with barley yellow dwarf virus resistance in oat. Euphytica 114(1):67–76Google Scholar
  11. Baum BR (1977) Oats: wild and cultivated, a monograph of the genus Avena L. (Poaceae). Biosyst Res Institute, Ottawa, CanadaGoogle Scholar
  12. Becker HC, Leon J (1988) Stability analysis in plant breeding. Plant Breed 101:1–23CrossRefGoogle Scholar
  13. Beebe S, Ramirez J, Jarvis A, Idupulapati R, Mosquera G et al (2011) Genetic improvement of common beans and the challenges of climate change. Crop Adapt Clim Change 26:356–369Google Scholar
  14. Beer SC, Siripoonwiwat W, O’donoughue LS et al (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages. J Agri Genomics 3:1–16Google Scholar
  15. Behnken LM, Breitenbach FR, Miller RP (2009) Impact of foliar fungicide to control crown rust in oats in 2009Google Scholar
  16. Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA (2018) Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol J 16:1452–1463CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bernardo R (2013) Genomewide markers as cofactors for precision mapping of quantitative trait loci. Theor Appl Genet 126:999–1009.  https://doi.org/10.1007/s00122-012-2032-2CrossRefPubMedGoogle Scholar
  18. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090.  https://doi.org/10.2135/cropsci2006.11.0690CrossRefGoogle Scholar
  19. Bjørnstad Å, He X, Tekle S, Klos K, Huang YF, Tinker NA, Dong Y, Skinnes H (2017) Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.). Plant Breed 136:620–636.  https://doi.org/10.1111/pbr.12502CrossRefGoogle Scholar
  20. Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, Andersson RE, Dimberg LH (2003) Avenanthramides in Oats (Avena sativa L.) and structure−antioxidant activity relationships. J Agri Food Chem 51:594–600.  https://doi.org/10.1021/JF020544FCrossRefGoogle Scholar
  21. Bryngelsson S, Mannerstedt-Fogelfors B, Kamal-Eldin A, Andersson R, Dimberg LH (2002) Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L). J Sci Food Agri 82:606–614.  https://doi.org/10.1002/jsfa.10.84CrossRefGoogle Scholar
  22. Buerstmayr H, Krenn N, Stephan U, Grausgruber H, Zechner E (2007) Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crop Res 101:343–351.  https://doi.org/10.1016/j.fcr.2006.12.011CrossRefGoogle Scholar
  23. Burton RA, Fincher GB (2009) (1,3;1,4)-β-D-Glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–882.  https://doi.org/10.1093/MP/SSP063CrossRefPubMedGoogle Scholar
  24. Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol 146:1821–1833CrossRefPubMedPubMedCentralGoogle Scholar
  25. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3; 1, 4)-β-D-glucans. Science 311(80):1940–1942Google Scholar
  26. Bush AL, Wise RP, Rayapati PJ, Lee M (1994) Restriction fragment length polymorphisms linked to genes for resistance to crown rust (Puccinia coronata) in near-isogenic lines of hexaploid oat (Avena sativa). Genome 37:823–831CrossRefPubMedGoogle Scholar
  27. Butt MS, Tahir-Nadeem M, Khan MK, Shabir R, Butt MS (2008) Oat: unique among the cereals. Eur J Nutr 47:68–79.  https://doi.org/10.1007/s00394-008-0698-7CrossRefPubMedGoogle Scholar
  28. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221CrossRefPubMedGoogle Scholar
  29. Chaffin AS, Huang YF, Smith S, Bekele WA, Babiker E, Gnanesh BN, Foresman BJ, Blanchard SG, Jay JJ, Reid RW, Wight CP (2016) A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome 9(2):10–25CrossRefGoogle Scholar
  30. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264.  https://doi.org/10.1071/fp02076CrossRefGoogle Scholar
  31. Chen C-YO, Milbury PE, Collins FW, Blumberg JB (2007a) Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J Nutr 137:1375–1382CrossRefGoogle Scholar
  32. Chen C, Neill K, Wichman D, Westcott M (2008) Hard red spring wheat response to row spacing, seeding rate, and nitrogen. Agron J 100:1296–1302.  https://doi.org/10.2134/agronj2007.0198CrossRefGoogle Scholar
  33. Chen G, Chong J, Prashar S, Procunier JD (2007b) Discovery and genotyping of high-throughput SNP markers for crown rust resistance gene Pc94 in cultivated oat. Plant Breed 126:379–384.  https://doi.org/10.1111/j.1439-0523.2007.01364.xCrossRefGoogle Scholar
  34. Chew P, Meade K, Hayes A, Harjes C, Bao Y, Beattie AD, Puddephat I, Gusmini G, Tanksley SD (2016) A study on the genetic relationships of Avena taxa and the origins of hexaploid oat. Theor Appl Genet 129:1405–1415.  https://doi.org/10.1007/s00122-016-2712-4CrossRefPubMedGoogle Scholar
  35. Chong J (2006) Crown rust in oat in western Canada in 2005. Can Plant Dis Surv 86:66–67Google Scholar
  36. Chong J, Gruenke J, Dueck R, Mayert W, Fetch JM, Mccartney C (2011) Virulence of Puccinia coronata f. sp. avenae in the eastern Prairie region of Canada during 2007–2009. Can J Plant Pathol Can Phytopathol 33:77–87.  https://doi.org/10.1080/07060661.2010.546957CrossRefGoogle Scholar
  37. Chong J, Leonard KJ, Salmeron JJ (2000) A North American system of nomenclature for Puccinia coronata f. sp avenae. Plant Dis 84:580–585CrossRefGoogle Scholar
  38. Chong J, Reimer E, Somers D, Aung T, Penner GA (2004) Development of sequence-characterized amplified region (SCAR) markers for resistance gene Pc94 to crown rust in oat. Can J Plant Pathol 26:89–96.  https://doi.org/10.1080/07060660409507118CrossRefGoogle Scholar
  39. Chong J, Seaman WL (1994) Incidence and virulence of Puccinia coronata f. sp. avenae in Canada in 1993. Can J Plant Pathol 16:335–340.  https://doi.org/10.1080/07060669409500740CrossRefGoogle Scholar
  40. Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896.  https://doi.org/10.1101/gr.217117.116CrossRefPubMedPubMedCentralGoogle Scholar
  41. Clemens R, van Klinken BJW (2014) Oats, more than just a whole grain: an introduction. Br J Nutr 112:S1–S3.  https://doi.org/10.1017/s0007114514002712CrossRefPubMedGoogle Scholar
  42. Clifford BC (1995) Diseases, pest and disorders of oat. In: Welch R (ed) The oat crop. Chapman & Hall, London, pp 252–278CrossRefGoogle Scholar
  43. Collins FW (1989) Oat phenolics: avenanthramides, novel substituted n-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agri Food Chem 37:60–66.  https://doi.org/10.1021/jf00085a015CrossRefGoogle Scholar
  44. Crosby K, Stokes TO, Latta RG (2014) Evolving California genotypes of Avena barbata are derived from multiple introductions but still maintain substantial population structure. PeerJ 2:e633.  https://doi.org/10.7717/peerj.633CrossRefPubMedPubMedCentralGoogle Scholar
  45. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975Google Scholar
  46. De Koeyer DL, Tinker NA, Wight CP, Deyl J, Burrows VD, O’Donoughue LS, Lybaert A, Molnar SJ, Armstrong KC, Fedak G, Wesenberg DM (2004) A molecular linkage map with associated QTLs from a hulless × covered spring oat population. Theor Appl Genet 108:1285–1298CrossRefGoogle Scholar
  47. Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49:255–266.  https://doi.org/10.1007/s13197-011-0365-5CrossRefPubMedGoogle Scholar
  48. Dimberg LH, Theander O, Lingnert H (1992) Avenanthramides-a group of phenolic antioxidants in oats. Cereal Chem 70:478–637Google Scholar
  49. Ehlers W (1989) Transpiration efficiency of oat. Agron J 81:810–817CrossRefGoogle Scholar
  50. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379CrossRefPubMedPubMedCentralGoogle Scholar
  51. Esvelt Klos K, Yimer BA, Babiker EM, Beattie AD, Bonman JM, Carson ML, Chong J, Harrison SA, Ibrahim AM, Kolb FL, McCartney CA (2017) Genome-wide association mapping of crown rust resistance in oat elite germplasm. Plant Genome 10(2):1–10Google Scholar
  52. Esvelt Klos K, Huang YF, Bekele WA, Obert DE, Babiker E, Beattie AD, Bjørnstad Å, Bonman JM, Carson ML, Chao S, Gnanesh BN (2016) Population genomics related to adaptation in elite oat germplasm. Plant Genome 9:1–12.  https://doi.org/10.3835/plantgenome2015.10.0103CrossRefGoogle Scholar
  53. FAO (2017a) FAOSTAT. In: Food agriculture organ. United Nations. http://www.fao.org/faostat/en/
  54. FAO (2017b) FAO. In: Food agriculture organ. United Nations. http://www.fao.org/home/en/
  55. FDA (2012) Code of federal regulations. (Title 21, Section 101.81)Google Scholar
  56. Feng B, Ma LJ, Yao JJ, Fang Y, Mei YA, Wei SM (2013) Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide. J Zhejiang Univ Sci B 14(2):97–105CrossRefPubMedPubMedCentralGoogle Scholar
  57. Fetch JM, Fetch T (2011) Inheritance of resistance to oat stem rust in the cultivars Ronald and AC Gwen. Can J Plant Sci 91:419–423CrossRefGoogle Scholar
  58. Fincher GB (2009) Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol 12:140–147CrossRefGoogle Scholar
  59. Fominaya A, Hueros G, Loarce Y, Ferrer E (1995) Chromosomal distribution of a repeated DNA-sequence from C-genome heterochromatin and the identification of a new ribosomal DNA locus in the Avena genus. Genome 38:548–557CrossRefGoogle Scholar
  60. Foresman BJ, Oliver RE, Jackson EW, Chao S, Arruda MP, Kolb FL (2016) Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.). PLoS One 11:e0155376.  https://doi.org/10.1371/journal.pone.0155376
  61. Frid A, Tura A, Pacini G, Ridderstrale M (2017) Effect of oral pre-meal administration of betaglucans on glycaemic control and variability in subjects with type 1 diabetes. Nutrients.  https://doi.org/10.3390/nu9091004CrossRefPubMedPubMedCentralGoogle Scholar
  62. Fu YB (2018) Oat evolution revealed in the maternal lineages of 25 Avena species. Sci Rep 8:4252.  https://doi.org/10.1038/s41598-018-22478-4CrossRefPubMedPubMedCentralGoogle Scholar
  63. Fu YB, Williams DJ (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117:333–342.  https://doi.org/10.1007/s00122-008-0778-3CrossRefPubMedPubMedCentralGoogle Scholar
  64. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346CrossRefPubMedPubMedCentralGoogle Scholar
  65. Gnanesh BN, Fetch JM, Menzies JG, Beattie AD, Eckstein PE, McCartney CA (2013) Chromosome location and allele-specific PCR markers for marker-assisted selection of the oat crown rust resistance gene Pc91. Mol Breed 32:679–686.  https://doi.org/10.1007/S11032-013-9900-6CrossRefGoogle Scholar
  66. Goddard ME, Hayes BJ (2009) Genomic selection based on dense genotypes inferred from sparse genotypes. Proc Assoc Advmt Anim Breed Genet 18:26–29Google Scholar
  67. Gramza-Michałowska A, Kmiecik D, Kobus-Cisowska J, Żywica A, Dziedzic K, Brzozowska A (2018) Phytonutrients in oat (Avena sativa L.) Drink: effect of plant extract on antiradical capacity, nutritional value and sensory characteristics. Polish J Food Nutr Sci 68:63–71.  https://doi.org/10.1515/pjfns-2017-0009CrossRefGoogle Scholar
  68. Guo L, Tong LT, Liu L, Zhong K, Qiu J, Zhou S (2014) The cholesterol-lowering effects of oat varieties based on their difference in the composition of proteins and lipids. Lipids Health Dis.  https://doi.org/10.1186/1476-511x-13-182CrossRefPubMedPubMedCentralGoogle Scholar
  69. Haas P, Machado MJ, Anton AA, Silva AS, De Francisco A (2009) Effectiveness of whole grain consumption in the prevention of colorectal cancer: meta-analysis of cohort studies. Intl J Food Sci Nutr 60:1–13.  https://doi.org/10.1080/09637480802183380CrossRefGoogle Scholar
  70. Halima NB, Saad RB, Khemakhem B, Fendri I, Abdelkafi S (2015) Oat (Avena sativa L.): oil and nutriment compounds Valorization for potential use in industrial applications. J Oleo Sci 64:915–932.  https://doi.org/10.5650/jos.ess15074CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1001139CrossRefPubMedPubMedCentralGoogle Scholar
  72. He X, Skinnes H, Oliver RE, Jackson EW, Bjørnstad Å (2013) Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.). Theor Appl Genet 126:2655–2670.  https://doi.org/10.1007/s00122-013-2163-0CrossRefPubMedPubMedCentralGoogle Scholar
  73. Herrmann M, Roderick HW (1996) Characterisation of new oat germplasm for resistance to powdery mildew. Euphytica 89:405–410Google Scholar
  74. Holland J, Portyanko V, Hoffman D, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105:113–126CrossRefPubMedPubMedCentralGoogle Scholar
  75. Holland JB, Moser HS, O’donoughue LS LS, Lee M (1997) QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37:1306–1316CrossRefGoogle Scholar
  76. Hongyu K, García-Peña M, Araújo LB, Dias CTS (2014) Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Lett 51:89–102CrossRefGoogle Scholar
  77. Hsam SLK, Mohler V, Zeller FJ (2014) The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes. J Appl Genet 55:155–162CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hsam SLK, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in cultivated oat (Avena sativa L.). 1. Gene Eg -3 in the cultivar ‘Mostyn’. Plant Breed 117:177–178.  https://doi.org/10.1111/j.1439-0523.1998.tb01474.xCrossRefGoogle Scholar
  79. Huang BE, George AW (2011) R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27:727–729CrossRefPubMedPubMedCentralGoogle Scholar
  80. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839CrossRefPubMedGoogle Scholar
  81. Ishihara A, Kojima K, Fujita T, Yamamoto Y, Nakajima H (2014) New series of avenanthramides in oat seed. Biosci Biotechnol Biochem 78:1975–1983.  https://doi.org/10.1080/09168451.2014.946390CrossRefPubMedGoogle Scholar
  82. Isidro-Sánchez J, Akdemir D, Burke J (2017) Genomic selection. In: The world wheat book, pp 1001–1019Google Scholar
  83. Jackson EW, Obert DE, Menz M, Hu G, Avant JB, Chong J, Bonman JM (2007) Characterization and mapping of oat crown rust resistance genes using three assessment methods. Phytopathology 97:1063–1070.  https://doi.org/10.1094/PHYTO-97-9-1063CrossRefPubMedGoogle Scholar
  84. Janatuinen EK, Kemppainen TA, Julkunen RJ, Kosma VM, Mäki M, Heikkinen M, Uusitupa MI (2002) No harm from five year ingestion of oats in coeliac disease. Gut 50:332–335.  https://doi.org/10.1136/gut.50.3.332CrossRefPubMedPubMedCentralGoogle Scholar
  85. Jellen E, Leggett J (2006) Cytogenetic manipulation in oat improvement. Genet Resour Chromosom Eng Crop Improv 2:199–231CrossRefGoogle Scholar
  86. Jellen EN, Gill BS, Cox TS (1994) Genomic in-situ hybridization differentiates between a/D-genome and C-genome chromatin and detects intergenomic translocations in polyploid oat species (Genus Avena). Genome 37:613–618CrossRefPubMedGoogle Scholar
  87. Jensen S, D’Arcy C (1995) Barley yellow dwarf: 40 years of progress. Phytopathology 97:55–74Google Scholar
  88. Jin H, Domier LL, Kolb FL, Brown CM (1998) Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–415.  https://doi.org/10.1094/PHYTO.1998.88.5.410CrossRefPubMedPubMedCentralGoogle Scholar
  89. Jones IT (1986) Inheritance of adult plant resistance to mildew in oats. Ann Appl Biol 109:187–192.  https://doi.org/10.1111/j.1744-7348.1986.tb03198.xCrossRefGoogle Scholar
  90. Jones IT (1977) Effect on grain-yield of adult plant resistance to mildew in oats. Ann Appl Biol 86:267–277.  https://doi.org/10.1111/j.1744-7348.1977.tb01840.xCrossRefGoogle Scholar
  91. Jones IT, Jones ERL (1979) Mildew of oats. UK Cereal Pathog Virulence Surv 1978 Annu Rep, pp 59–63Google Scholar
  92. Jones JM, Engleson J (2010) Whole grains: Benefits and challenges. Annu Rev Food Sci Technol 1:19–40CrossRefPubMedGoogle Scholar
  93. Kalbasiashtari A, Hammond EG (1977) Oat oil: refining and stability. J Am Oil Chem Soc 54:305–307.  https://doi.org/10.1007/bf02672430CrossRefGoogle Scholar
  94. Kasum CM, Jacobs DR, Nicodemus K, Folsom AR (2002) Dietary risk factors for upper aerodigestive tract cancers. Int J Cancer 99:267–272.  https://doi.org/10.1002/ijc.10341CrossRefPubMedGoogle Scholar
  95. Kebede AZ, Friesen-Enns J, Gnanesh BN, Menzies JG, Fetch JW, Chong J, Beattie AD, Paczos-Grzęda E, McCartney CA (2018) Mapping oat crown rust resistance gene Pc45 confirms association with PcKM. G3 (Bethesda) g3.200757.2018.  https://doi.org/10.1534/g3.118.200757
  96. Kellogg EA, Camara PE, Rudall PJ, Ladd P, Malcomber ST, Whipple C, Doust AN (2013) Early inflorescence development in the grasses (Poaceae). Front Plant Sci 4:250.  https://doi.org/10.3389/fpls.2013.00250CrossRefPubMedPubMedCentralGoogle Scholar
  97. Khan K, Jovanovski E, Ho HV, Marques AC, Zurbau A, Mejia SB, Sievenpiper JL, Vuksan V (2018) The effect of viscous soluble fiber on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 28:3–13.  https://doi.org/10.1016/j.numecd.2017.09.007CrossRefPubMedGoogle Scholar
  98. Kianian SF, Phillips RL, Rines HW, Fulcher RG, Webster FH, Stuthman DD (2000) Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n = 6x = 42). Theor Appl Genet 101:1039–1048.  https://doi.org/10.1007/s001220051578CrossRefGoogle Scholar
  99. Koprivnjak O, Majetić V, Staver MM, Lovrić A, Blagović B (2010) Effect of phospholipids on extraction of hydrophilic phenols from virgin olive oils. Food Chem 119:698–702.  https://doi.org/10.1016/j.foodchem.2009.07.016CrossRefGoogle Scholar
  100. Kulcheski FR, Graichen FA, Martinelli JA, Locatelli AB, Federizzi LC, Delatorre CA (2010) Molecular mapping of Pc68, a crown rust resistance gene in Avena sativa. Euphytica 175:423–432.  https://doi.org/10.1007/s10681-010-0198-8CrossRefGoogle Scholar
  101. Ladizinsky G (1998) A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet Resour Crop Evol 45:263–269CrossRefGoogle Scholar
  102. Ladizinsky G (2012) Studies in oat evolution : a man’s life with Avena. SpringerGoogle Scholar
  103. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedPubMedCentralGoogle Scholar
  104. Langseth W, Elen O (1996) Differences between barley, oats and wheat in the occurrence of deoxynivalenol and other trichothecenes in Norwegian grain. J Phytopathol Zeitschrift 144:113–118CrossRefGoogle Scholar
  105. Leonard KJ (2002) Oat lines with effective adult plant resistance to crown rust. Plant Dis 86:593–598.  https://doi.org/10.1094/pdis.2002.86.6.593CrossRefPubMedGoogle Scholar
  106. Li Z, Chen Y, Meesapyodsuk D, Qiu X (2019) The biosynthetic pathway of major avenanthramides in oat. Metabolites.  https://doi.org/10.3390/metabo9080163CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lin Y, Gnanesh BN, Chong J, Chen G, Beattie AD, Fetch JW, Kutcher HR, Eckstein PE, Menzies JG, Jackson EW, McCartney CA (2014) A major quantitative trait locus conferring adult plant partial resistance to crown rust in oat. BMC Plant Biol 14:250.  https://doi.org/10.1186/s12870-014-0250-2CrossRefPubMedPubMedCentralGoogle Scholar
  108. Linares C, Ferrer E, Fominaya A (1998) Discrimination of the closely related A and D genomes of the hexaploid oat Avena sativa L. Proc Natl Acad Sci USA 95:12450–12455.  https://doi.org/10.1073/pnas.95.21.12450CrossRefPubMedGoogle Scholar
  109. Lippi MM, Foggi B, Aranguren B, Ronchitelli A, Revedin A (2015) Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P. Proc Natl Acad Sci USA 112:12075–12080.  https://doi.org/10.1073/pnas.1505213112CrossRefGoogle Scholar
  110. Liu H, Chen G-B (2017) A fast genomic selection approach for large genomic data. Theor Appl Genet.  https://doi.org/10.1007/s00122-017-2887-3CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu Q, Li X, Zhou X, Li M, Zhang F, Schwarzacher T, Heslop-Harrison JS (2019) The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC Plant Biol 19(1):226–236CrossRefPubMedPubMedCentralGoogle Scholar
  112. Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46:207–219CrossRefGoogle Scholar
  113. Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, Hennekens CH, Willett WC (2000) A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Amer J Public Health 90:1409–1415CrossRefGoogle Scholar
  114. Locatelli AB, Federizzi LC, Milach SC, Wight CP, Molnar SJ, Chapados JT, Tinker NA (2006) Loci affecting flowering time in oat under short-day conditions. Genome 49:1528–1538.  https://doi.org/10.1139/g06-108CrossRefPubMedPubMedCentralGoogle Scholar
  115. Løes AK, Henriksen TM, Eltun R (2007) N supply in stockless organic cereal production under northern temperate conditions. Undersown legumes or whole season green manure? In: 3rd QLIF congress improving sustainability in organic and low input food production system, University of Hohenheim, p 230Google Scholar
  116. Londono DM, Van’t Westende WP, Goryunova S, Salentijn EM, Van den Broeck HC, Van der Meer IM, Visser RG, Gilissen LJ, Smulders MJ (2013) Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. J Cereal Sci 58:170–177CrossRefGoogle Scholar
  117. Loskutov I, Rines H (2011) Avena. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, Heidelberg, pp 109–183Google Scholar
  118. Loskutov IG (2008) On evolutionary pathways of Avena species. Genet Resour Crop Evol 55:211–220.  https://doi.org/10.1007/s10722-007-9229-2CrossRefGoogle Scholar
  119. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215CrossRefPubMedPubMedCentralGoogle Scholar
  120. Lüpken T, Stein N, Perovic D, Habekuß A, Krämer I, Hähnel U, Steuernagel B, Scholz U, Zhou R, Ariyadasa R, Taudien S (2013) Genomics-based high-resolution mapping of the BaMMV/BaYMV resistance gene rym11 in barley (Hordeum vulgare L.). Theor Appl Genet 126:1201–1212.  https://doi.org/10.1007/s00122-013-2047-3CrossRefPubMedPubMedCentralGoogle Scholar
  121. MacArthur-Grant LA (1986) Sugars and nonstarchy polysaccharides in oats. Oat Chemistry and Technology. F. H. Webst. American Association of Cereal Chemists, St. Paul, Minnesota, USA, pp 75–92Google Scholar
  122. Mandakova T, Lysak MA (2018) Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Plant Biol 42:55–65CrossRefPubMedGoogle Scholar
  123. Marshall GC, Ohm HW (1987) Yield responses of 16 winter wheat cultivars to row spacing and seeding rate. Agron J 79:1027–1030CrossRefGoogle Scholar
  124. Marshall HG (1992) Breeding oat for resistance to environmental stress. Oat Sci Technol:699–749Google Scholar
  125. Martens JW (1985) Oat Stem rust. Dis Distrib Epidemiol Control.  https://doi.org/10.1016/B978-0-12-148402-6.50012-2CrossRefGoogle Scholar
  126. Martinelli JA, Chaves MS, Graichen FA, Federizzi LC, Dresch LF (2014) Impact of Fusarium head blight in reducing the weight of oat grains. J Agri Sci 6:188–198Google Scholar
  127. Martinez-Villaluenga C, Penas E (2017) Health benefits of oat: current evidence and molecular mechanisms. Curr Opin Food Sci 14:26–31.  https://doi.org/10.1016/j.cofs.2017.01.004CrossRefGoogle Scholar
  128. Mattila P, Pihlava JM, Hellstrom J (2005) Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53:8290–8295.  https://doi.org/10.1021/jf051437zCrossRefPubMedGoogle Scholar
  129. Mauler-Machnik A, Zahn K (1994) Ear fusarioses in wheat: new findings on their epidemiology and control with Folicur (tebuconazole). Pflanzenschutz-Nachrichten Bayer 47:129–155Google Scholar
  130. McCartney CA, Stonehouse RG, Rossnagel BG, Eckstein PE, Scoles GJ, Zatorski T, Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. Theor Appl Genet 122:317–325.  https://doi.org/10.1007/s00122-010-1448-9CrossRefPubMedPubMedCentralGoogle Scholar
  131. McKirdy SJ, Jones RAC, Nutter FW (2002) Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Dis 86:769–773CrossRefGoogle Scholar
  132. Mesterházy Á, Bartók T (1996) Control of Fusarium head blight of wheat by fungicides and its effect on the toxin contamination of the grains. Pflanzenschutz-Nachrichten Bayer 49:181–198Google Scholar
  133. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide Dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  134. Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67:731–735CrossRefGoogle Scholar
  135. Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71:921–930.  https://doi.org/10.1093/ajcn/71.4.921CrossRefPubMedGoogle Scholar
  136. Molnar SJ, Chapados JT, Satheeskumar S, Wight CP, Bancroft B, Orr W, Luckert DE, Kibite S (2012) Comparative mapping of the oat Dw6/dw6 dwarfing locus using NILs and association with vacuolar proton ATPase subunit H. Theor Appl Genet 124:1115–1125.  https://doi.org/10.1007/s00122-011-1773-7CrossRefPubMedGoogle Scholar
  137. Montilla-Bascón G, Armstrong PR, Rongkui H, Mark S (2017) Quantification of betaglucans, lipid and protein contents in whole oat groats (Avena sativa L.) using near infrared reflectance spectroscopy. J Near Infrared Spectrosc 25:172–179.  https://doi.org/10.1177/0967033517709615CrossRefGoogle Scholar
  138. Montilla-Bascón G, Rispail N, Sánchez-Martín J, Rubiales D, Mur LA, Langdon T, Howarth CJ, Prats E (2015) Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front Plant Sci 6:103.  https://doi.org/10.3389/fpls.2015.00103
  139. Morikawa T, Leggett JM (1996) Cytological and morphological variations in wild populations of Avena canariensis from the Canary Islands. Genes Genet Syst 71:15–21CrossRefGoogle Scholar
  140. Morikawa T, Leggett JM (2008) Isozyme polymorphism and genetic differentiation in natural populations of an endemic tetraploid species Avena maroccana in Morocco. Genet Resour Crop Evol 55:1313–1321.  https://doi.org/10.1007/s10722-008-9330-1CrossRefGoogle Scholar
  141. Nava IC, Wight CP, Pacheco MT, Federizzi LC, Tinker NA (2012) Tagging and mapping candidate loci for vernalization and flower initiation in hexaploid oat. Mol Breed 30:1295–1312.  https://doi.org/10.1007/s11032-012-9715-xCrossRefGoogle Scholar
  142. Nazareno ES, Li F, Smith M, Park RF, Kianian SF, Figueroa M (2018) Puccinia coronata f. sp avenae: a threat to global oat production. Mol Plant Pathol 19:1047–1060.  https://doi.org/10.1111/mpp.12608CrossRefPubMedPubMedCentralGoogle Scholar
  143. Nebus J, Nystrand G, Fowler J, Wallo W (2009) A daily oat-based skin care regimen for atopic skin. J Am Acad Dermatol 60:AB67–AB67Google Scholar
  144. Newell MA, Asoro FG, Scott MP, White PJ, Beavis WD, Jannink JL (2012) Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theor Appl Genet 125:1687–1696CrossRefPubMedPubMedCentralGoogle Scholar
  145. Nutzmann HW, Huang AC, Osbourn A (2016) Plant metabolic clusters—from genetics to genomics. New Phytol 211:771–789CrossRefPubMedPubMedCentralGoogle Scholar
  146. Nutzmann HW, Scazzocchio C, Osbourn A (2018) Metabolic gene clusters in eukaryotes. Annu Rev Genet 52(52):159–183CrossRefPubMedPubMedCentralGoogle Scholar
  147. O’Donoughue LS, Wang Z, Röder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1997) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 35:765–771 http://dx.doi.org/101139/g92-117
  148. Okarter N, Liu RH (2010) Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 50:193–208.  https://doi.org/10.1080/10408390802248734CrossRefPubMedPubMedCentralGoogle Scholar
  149. Okon SM (2015) Effectiveness of resistance genes to powdery mildew in oat. Crop Protec 74:48–50.  https://doi.org/10.1016/j.cropro.2015.04.004CrossRefGoogle Scholar
  150. Okoń SM, Ociepa T (2018) Effectiveness of new sources of resistance against oat powdery mildew identified in A. sterilis. J Plant Dis Protec 125:505–510.  https://doi.org/10.1007/s41348-018-0171-7CrossRefGoogle Scholar
  151. Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Morehead NH, Adhikary D, Jellen EN, Maughan PJ, Guedira GL (2011) Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genom 12:77CrossRefGoogle Scholar
  152. Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, Shackelford I, Korol AB (2013) SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS ONE 8:58068CrossRefGoogle Scholar
  153. Panisson E, Reis EM, Boller W (2003) Quantificação de danos causados pela Giberela em cereais de inverno, na safra 2000. Fitopatol Bras 28:189–192CrossRefGoogle Scholar
  154. Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F, Visser RG, Bai Y, Lotti C, Ricciardi (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431.  https://doi.org/10.1007/s00122-011-1677-6CrossRefPubMedGoogle Scholar
  155. Peng Y, Zhou P, Zhao J, Li J, Lai S, Tinker NA, Liao S, Yan H (2018) Phylogenetic relationships in the genus Avena based on the nuclear Pgk1 gene. PLoS ONE 13:e0200047.  https://doi.org/10.1371/journal.pone.0200047CrossRefPubMedPubMedCentralGoogle Scholar
  156. Peng YY, Wei YM, Baum BR, Yan ZH, Lan XJ, Dai SF, Zheng YL (2010) Phylogenetic inferences in Avena based on analysis of FL intron2 sequences. Theor Appl Genet 121:985–1000.  https://doi.org/10.1007/s00122-010-1367-9CrossRefPubMedGoogle Scholar
  157. Peng YY, Wei YM, Baum BR, Zheng YL (2008) Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae). Genome 51:137–154.  https://doi.org/10.1139/g07-111CrossRefPubMedGoogle Scholar
  158. Penner GA, Chong J, Wight CP, Molnar SJ, Fedak G (1993) Identification of an RAPD marker for the crown rust resistance gene Pc68 in oats. Genome 36:818–820CrossRefGoogle Scholar
  159. Peräaho M, Kaukinen K, Mustalahti K, Vuolteenaho N, Mäki M, Laippala P, Collin P (2004) Effect of an oats-containing gluten-free diet on symptoms and quality of life in coeliac disease. A randomized study. Scand J Gastroenterol 39:27–31.  https://doi.org/10.1080/00365520310007783CrossRefPubMedGoogle Scholar
  160. Peterson DM (2001) Oat antioxidants. J Cereal Sci 33:115–129.  https://doi.org/10.1006/jcrs.2000.0349CrossRefGoogle Scholar
  161. Peterson DM, Qureshi A (1993) Genotype and environmental effects on tocols of barley and oats. Cereal Chem 70:157–162CrossRefGoogle Scholar
  162. Peterson DM, Saigo RH, Holy J (1985) Development of oat aleurone cells and their protein bodies. Cereal Chem 62:366–371Google Scholar
  163. Peterson DM, Wood DF (1997) Composition and structure of high-oil oat. J Cereal Sci 26:121–128.  https://doi.org/10.1006/JCRS.1996.0111CrossRefGoogle Scholar
  164. Pirgozliev SR, Edwards SG, Hare MC, Jenkinson P (2003) Strategies for the control of Fusarium head blight in cereals. Eur J Plant Pathol 109:731–742.  https://doi.org/10.1023/A:1026034509247CrossRefGoogle Scholar
  165. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113.  https://doi.org/10.3835/Plantgenome2012.06.0006CrossRefGoogle Scholar
  166. Poland JA, Rife T (2013) Genotyping-by-Sequencing for Plant Breeding and Genetics. Plant Genome 5:92–98CrossRefGoogle Scholar
  167. Prats E, Llamas MJ, Rubiales D (2007) Characterization of resistance mechanisms to Erysiphe pisi in Medicago truncatula. Phytopathology 97:1049–1053.  https://doi.org/10.1094/phyto-97-9-1049CrossRefPubMedGoogle Scholar
  168. Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn AA (2004) A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci USA 101:8233–8238CrossRefGoogle Scholar
  169. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582CrossRefGoogle Scholar
  170. Rajhathy T, Thomas H (1974) Cytogenetics of oats (Avena L.). Genet Soc Canada 2:86–90Google Scholar
  171. Rasane P, Jha A, Sabikhi L, Kumar A, Unnikrishnan VS (2015) Nutritional advantages of oats and opportunities for its processing as value added foods—a review. J Food Sci Technol 52:662–675.  https://doi.org/10.1007/s13197-013-1072-1CrossRefPubMedGoogle Scholar
  172. Ren CZ, Ma BL, Burrows V, Zhou J, Hu YG, Guo L, Wei L, Sha L, Deng L (2007) Evaluation of early mature naked oat varieties as a summer-seeded crop in dryland northern climate regions. Field Crop Res 103:248–254.  https://doi.org/10.1016/j.fcr.2007.07.001CrossRefGoogle Scholar
  173. Rines HW, Miller ME, Carson M, Chao S, Tiede T, Wiersma J, Kianian SF (2018) Identification, introgression, and molecular marker genetic analysis and selection of a highly effective novel oat crown rust resistance from diploid oat, Avena strigosa. Theor Appl Genet 131:721–733CrossRefGoogle Scholar
  174. Rines HW, Molnar SJ, Tinker NA, Phillips RL (2006) Oat. In: Kole C (ed) Genome maping and molecular breeding in plants, vol 1. Cereals and Millets. Springer, Berlin, Heidelberg, pp 211–242Google Scholar
  175. Roderick HW, Jones ERL, Sebesta J (2000) Resistance to oat powdery mildew in Britain and Europe: a review. Ann Appl Biol 136:85–91.  https://doi.org/10.1111/j.1744-7348.2000.tb00012.xCrossRefGoogle Scholar
  176. Rondanelli M, Opizzi A, Monteferrario F (2009) The biological activity of beta-glucans. Minerva Med 100:237–245PubMedGoogle Scholar
  177. Rooney WL, Rines HW, Phillips RL (1994) Identification of RFLP Markers linked to crown rust resistance genes Pc 91 and Pc in oat. Crop Sci 34:940.  https://doi.org/10.2135/cropsci1994.0011183X003400040019xCrossRefGoogle Scholar
  178. Sánchez-Martín J, Rispail N, Flores F, Emeran AA, Sillero JC, Rubiales D, Prats E (2017) Higher rust resistance and similar yield of oat landraces versus cultivars under high temperature and drought. Agron Sustain Dev.  https://doi.org/10.1007/s13593-016-0407-5CrossRefGoogle Scholar
  179. Sánchez-Martín J, Rubiales D, Flores F, Emeran AA, Shtaya MJ, Sillero JC, Allagui MB, Prats E (2014) Adaptation of oat (Avena sativa) cultivars to autumn sowings in Mediterranean environments. Field Crop Res 156:111–122.  https://doi.org/10.1016/j.fcr.2013.10.018CrossRefGoogle Scholar
  180. Sánchez-Martín J, Rubiales D, Sillero JC, Prats E (2012) Identification and characterization of sources of resistance in Avena sativa, A. byzantina and A. strigosa germplasm against a pathotype of Puccinia coronata f.sp. avenae with virulence against the Pc94 resistance gene. Plant Pathol.  https://doi.org/10.1111/j.1365-3059.2011.02514.x
  181. Sanz MJ, Jellen EN, Loarce Y, Irigoyen ML, Ferrer E, Fominaya A (2010) A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. Theor Appl Genet 121:1541–1552.  https://doi.org/10.1007/s00122-010-1409-3CrossRefPubMedGoogle Scholar
  182. Satheeskumar S, Sharp PJ, Lagudah ES, McIntosh RA, Molnar SJ (2011) Genetic association of crown rust resistance gene Pc68, storage protein loci, and resistance gene analogues in oats. Genome 54:484–497.  https://doi.org/10.1139/g11-014CrossRefPubMedGoogle Scholar
  183. Schubert M, Marcussen T, Meseguer AS, Fjellheim S (2019) The grass subfamily Pooideae: cretaceous-palaeocene origin and climate-driven cenozoic diversification. Glob Ecol Biogeogr 28:1168–1182Google Scholar
  184. Sengupta S, Muir JG, Gibson PR (2006) Does butyrate protect from colorectal cancer? J Gastroenterol Hepatol 21:209–218.  https://doi.org/10.1111/j.1440-1746.2006.04213.xCrossRefPubMedGoogle Scholar
  185. Shewry PR, Casey R (1999) Seed proteins. Seed proteins. Springer, Netherlands, Dordrecht, pp 1–10CrossRefGoogle Scholar
  186. Simons MD (1985) Crown rust. In: Roelfs AP (ed) The cereal rusts: diseases, distribution, epidemiology and control. Academic Press, New York, NY, USA, pp 132–172Google Scholar
  187. Singh R, De S, Belkheir A (2013) Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview. Crit Rev Food Sci Nutr 53:126–144.  https://doi.org/10.1080/10408398.2010.526725CrossRefPubMedGoogle Scholar
  188. Siripoonwiwat W, O’Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J Quant Trait Loci 2(3):1–10Google Scholar
  189. Slavin JL, Martini MC, Jacobs DR, Marquart L (1999) Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr 70:459s–463s.  https://doi.org/10.1093/ajcn/70.3.459sCrossRefPubMedGoogle Scholar
  190. Smith S (2017) Consensus mapping and association mapping in hexaploid oat. North CarolinaGoogle Scholar
  191. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8CrossRefGoogle Scholar
  192. Stevens EJ, Armstrong KW, Bezar HJ, Griffin WB, Hampton JG(2004) Fodder oats an overview. In: Suttie JM, Reynolds SG (eds) Fodder oats: a world overview, vol 33, pp 11–18Google Scholar
  193. Stewart D, McDougall G (2014) Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. Br J Nutr 112:S50–S57CrossRefPubMedGoogle Scholar
  194. Suarna C, Hood RL, Dean RT, Stocker R (1993) Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoproteins. Biochim Biophys Acta 1166:163–170.  https://doi.org/10.1016/0005-2760(93)90092-nCrossRefPubMedGoogle Scholar
  195. Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflamatory and anti-itch activity. Arch Dermatol Res 300:564–574CrossRefGoogle Scholar
  196. Surampudi P, Enkhmaa B, Anuurad E, Berglund L (2016) Lipid lowering with soluble dietary fiber. Curr Atheroscler Rep.  https://doi.org/10.1007/s11883-016-0624-zCrossRefPubMedGoogle Scholar
  197. Szydlowska-Czerniak A, Karlovits G, Hellner G, Szlyk E (2010) Effect of enzymatic and hydrothermal treatments of rapeseeds on quality of the pressed rapeseed oils: part II. Oil yield and oxidative stability. Process Biochem 45:247–258.  https://doi.org/10.1016/j.procbio.2009.09.014CrossRefGoogle Scholar
  198. Tanhuanpää P, Kalendar R, Schulman AH, Kiviharju E (2008) The first doubled haploid linkage map for cultivated oat. Genome 51:560–569CrossRefPubMedPubMedCentralGoogle Scholar
  199. Tapola N, Karvonen H, Niskanen L, Mikola M, Sarkkinen E (2005) Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 15:255–261.  https://doi.org/10.1016/j.numecd.2004.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  200. Tekauz A, McCallum B, Ames N, Fetch JM (2004) Fusarium head blight of oat—current status in western Canada. Can Plant Dis Surv 26(4):473–479Google Scholar
  201. Tekle S, Skinnes H, Bjornstad A (2013) The germination problem of oat seed lots affected by Fusarium head blight. Eur J Plant Pathol 135:147–158.  https://doi.org/10.1007/s10658-012-0074-6CrossRefGoogle Scholar
  202. Thies F, Masson LF, Boffetta P, Kris-Etherton P (2014a) Oats and CVD risk markers: a systematic literature review. Br J Nutr 112:S19–S30CrossRefGoogle Scholar
  203. Thies F, Masson LF, Boffetta P, Kris-Etherton P (2014b) Oats and bowel disease: a systematic literature review. Br J Nutr 112:S31–S43CrossRefGoogle Scholar
  204. Thomas H, Aung T (1978) The transfer of mildew resistance from the tetraploid wild oat Avena barbata into the cultivated oat. In: Proceedings of the 8th EUCARPIA congress. II. Interspecific gene transfer. Madrid, pp 109–112Google Scholar
  205. Tinker NA, Bekele WA, Hattori J (2016) Haplotag: software for haplotype-based genotyping-by-sequencing analysis. G3 (Bethesda) 6:857–863Google Scholar
  206. Tinker NA, Chao S, Lazo GR, Oliver RE, Huang YF, Poland JA, Jellen EN, Maughan PJ, Kilian A, Jackson EW (2014) A SNP genotyping array for hexaploid oat. Plant Genome.  https://doi.org/10.3835/plantgenome2014.03.0010CrossRefGoogle Scholar
  207. Tripathi V, Singh A, Ashraf MT (2018) Avenanthramides of oats: Medicinal importance and future perspectives. Pharmacogn Rev 12:66.  https://doi.org/10.4103/phrev.phrev_34_17CrossRefGoogle Scholar
  208. Tumino G, Voorrips RE, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJ (2017) Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica 213:163.  https://doi.org/10.1007/s10681-017-1939-8CrossRefGoogle Scholar
  209. Valentine J (1984) Accelerated pedigree selection: an alternative to individual plant selection in the normal pedigree breeding method in the self-pollinated cereals. Euphytica 33:943–951CrossRefGoogle Scholar
  210. Valentine J, Cowan A, Marshall A (2011) Oat breeding. In: Webster F, Wood P (eds) Oats chemistry and technology. AACC International, St. Paul Minnesota, USA, pp 11–30CrossRefGoogle Scholar
  211. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22CrossRefPubMedPubMedCentralGoogle Scholar
  212. Vitaglione P, Napolitano A, Foliano V (2008) Cereal dietary fiber, a natural functional ingredient to deliver phenolic compounds in the gut. Trends Food Sci Technol 19:541–561CrossRefGoogle Scholar
  213. Watkins JE, Lane LC (2004) Barley yellow dwarf disease of barley, oats, and wheat. In: Nebguide, University of Nebraska. http://ianrpubs.unl.edu/plantdisease/g906.htm
  214. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MA, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29CrossRefPubMedGoogle Scholar
  215. Webster FH, Wood PJ (2011) OATS: chemistry and technology. AACC International, St. Paul, Minnesota, USACrossRefGoogle Scholar
  216. Welch RW (1995) The chemical composition of oats. The Oat Crop. Springer, Netherlands, Dordrecht, pp 279–320CrossRefGoogle Scholar
  217. Wight CP, O’Donoughue LS, Chong J, Tinker NA, Molnar SJ (2004) Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Mol Breed 14:349–361.  https://doi.org/10.1007/s11032-004-0148-zCrossRefGoogle Scholar
  218. Wight CP, Penner GA, O’Donoughue LS, Burrows VD, Molnar SJ, Fedak G (1994) The identification of random amplified polymorphic DNA markers for daylength insensitivity in oat. Genome 37:910–914CrossRefPubMedGoogle Scholar
  219. Wilson WA, McMullen MS (1997) Dosage dependent genetic suppression of oat crown rust resistance gene Pc-62. Crop Sci 37:1699.  https://doi.org/10.2135/cropsci1997.0011183X003700060004xCrossRefGoogle Scholar
  220. Winterfeld G, Doring E, Roser M (2009) Chromosome evolution in wild oat grasses (Aveneae) revealed by molecular phylogeny. Genome 52:361–380.  https://doi.org/10.1139/g09-012CrossRefPubMedGoogle Scholar
  221. Wooten DR, Livingston DP, Lyerly HJ, Holland JB, Jellen EN, Marshall DS, Murphy JP (2009) Quantitative trait loci and epistasis for oat winter-hardiness component traits. Crop Sci 49:1989CrossRefGoogle Scholar
  222. Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu YB, Diederichsen A, Howarth CJ, Jellen EN, Boyle B (2016a) High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor Appl Genet 129:2133–2149.  https://doi.org/10.1007/s00122-016-2762-7CrossRefPubMedPubMedCentralGoogle Scholar
  223. Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, Tinker NA (2016b) Genome size variation in the genus Avena. Genome 59:209–220CrossRefPubMedGoogle Scholar
  224. Yao J, Zhao D, Chen X, Zhang Y, Wang J (2018) Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat (Triticum aestivum L.). Crop J 6:353–365.  https://doi.org/10.1016/j.cj.2018.05.003CrossRefGoogle Scholar
  225. Youngs VL (1986) Oat lipids and lipid-related enzymes. In: Webst FH (ed) Oats: chemistry and technology. American Association of Cereal Chemists, St. Paul. MN, pp 205–226Google Scholar
  226. Yu J, Herrmann M (2006) Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theor Appl Genet 113:429–437CrossRefPubMedGoogle Scholar
  227. Zhou MX, Robards K, Glennie-Holmes M, Helliwell S (1999a) Oat lipids. J Am Oil Chem Soc 76:159–169.  https://doi.org/10.1007/s11746-999-0213-1CrossRefGoogle Scholar
  228. Zhou X, Jellen EN, Murphy JP (1999b) Progenitor germplasm of domesticated hexaploid oat. Crop Sci 39:1208–1214CrossRefGoogle Scholar
  229. Zhu S, Kaeppler HF (2003) A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross “Ogle/MAM17-5”. Theor Appl Genet 107:26–35CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julio Isidro-Sánchez
    • 1
    Email author
  • Elena Prats
    • 2
  • Catherine Howarth
    • 3
  • Tim Langdon
    • 3
  • Gracia Montilla-Bascón
    • 2
  1. 1.School of Agriculture and Food ScienceUniversity College DublinDublinIreland
  2. 2.CSIC, Institute for Sustainable AgricultureCórdobaSpain
  3. 3.Institute of Biological, Environmental and Rural SciencesAberystwyth University WalesAberystwythUK

Personalised recommendations