Advertisement

Advanced Genomics and Breeding Tools to Accelerate the Development of Climate Resilient Wheat

  • Yuanfeng Hao
  • Awais RasheedEmail author
  • Robert Jackson
  • Yonggui Xiao
  • Yong Zhang
  • Xianchun Xia
  • Zhonghu HeEmail author
Chapter
  • 89 Downloads

Abstract

Knowledge-based breeding to develop high-yielding wheat cultivars is the key to keep pace with increasing food demand, not only in optimal but also in stressed conditions. Resilience to climate extremes and variability has become one of the most important crop breeding targets. Genomics will play an important role to uncover the basis of adaptability to heat, drought, salinity and other abiotic stresses, and disease resistances in wheat. Deeper understanding of the physiological and genetic bases of drought and heat resistance is crucial for maintaining and improving breeding program efficiency. The high-quality wheat reference genome sequence is recently decoded and new genotyping tools are being developed based on the most updated genomics information to be used in practical breeding programs. In this chapter, we focused on the (i) quantitative trait loci (QTLs) analysis related to drought, heat, salinity tolerance, and diseases resistance in wheat, (ii) functional genes discovered for important breeding traits and development of markers for use in breeding, (iii) role of wheat genetic resources to enhance the genetic diversity and expansion of alleles for important genes, (iv) improved genotyping and phenotyping approaches to understand the genetic basis of wheat production traits, and (iv) future strategies to accelerate the rate of genetic gain in a changing climate.

Keywords

Climate changes Functional markers Genetic resources Genomics QTL Wheat breeding 

Notes

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (2016YFE0108600 and 2016YFD0101802), National Natural Science Foundation of China for International Collaborations (31761143006), and Agricultural Science and Technology Innovation Program of CAAS.

References

  1. Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke LJ, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano M (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14:1095–1098CrossRefGoogle Scholar
  2. Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092CrossRefGoogle Scholar
  3. Acuna-Galindo MA, Mason RE, Subrahmanyam NK, Hays D (2014) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492CrossRefGoogle Scholar
  4. Afzal F, Li H, Gul A, Subhani A, Ali A, Mujeeb-Kazi A, Ogbonnaya F, Trethowan R, Xia X, He Z, Rasheed A (2019) Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3: Genes, Genomes, Genetics 9:1957Google Scholar
  5. Ahmad I, Khaliq I, Mahmood N, Khan N, Secretariat EF (2015) Morphological and physiological criteria for drought tolerance at seedling stage in wheat. J Anim Plant Sci 25:1041–1048Google Scholar
  6. Ahmadi G, Akbarabadi A, Kahrizi D, Rezaizad A, Gheytouli M (2012) Study of drought tolerance of bread wheat (Triticum aestivum L.) genotypes in seedling stage. Biharean Biologist 6:77–80Google Scholar
  7. Ain Q-U, Rasheed A, Anwar A, Mahmood T, Mahmood T, Imtiaz M, He Z, Xia X, Quraishi U (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6Google Scholar
  8. Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530CrossRefPubMedPubMedCentralGoogle Scholar
  9. Akram M (2011) Growth and yield components of wheat under water stress of different growth stages. Bangladesh J Agri Res 36:455–468CrossRefGoogle Scholar
  10. Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley AR, Alda M, Jack P, Phillips AL, Edwards KJ (2017) Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J 15:390–401CrossRefGoogle Scholar
  11. Araus JL, Serret MD, Lopes MS (2019) Transgenic solutions to increase yield and stability in wheat: shining hope or flash in the pan? J Exp Bot 70:1419–1424CrossRefPubMedPubMedCentralGoogle Scholar
  12. ArausJL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61Google Scholar
  13. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, Asyraf Md Hatta M, Athiyannan N, Cheema J, Yu G, Kangara N, Ghosh S, Szabo LJ, Poland J, Bariana H, Jones JDG, Bentley AR, Ayliffe M, Olson E, Xu SS, Steffenson BJ, Lagudah E, Wulff BBH (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143Google Scholar
  14. Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20CrossRefGoogle Scholar
  15. Atkinson JA, Jackson RJ, Bentley AR, Ober E, Wells DM (2018) Field phenotyping for the future. In: Roberts JA (ed) Annual Plant Reviews online. WileyGoogle Scholar
  16. Azadi A, Mardi M, Hervan EM, Mohammadi SA, Moradi F, Tabatabaee MT, Pirseyedi SM, Ebrahimi M, Fayaz F, Kazemi M (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep 33:102–120CrossRefGoogle Scholar
  17. Bai G, Su Z, Cai J (2018) Wheat resistance to Fusarium head blight. Can J Plant Path 40:336–346CrossRefGoogle Scholar
  18. Baloch FS, Alsaleh A, Shahid MQ, Ciftci V, L ESdM, Aasim M, Nadeem MA, Aktas H, Ozkan H, Hatipoglu R (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One 12:e0167821Google Scholar
  19. Baluja J, Diago MP, Balda P, Zorer R, Meggio F, Morales F et al (2012) Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig Sci 30:511–522CrossRefGoogle Scholar
  20. Barber HM, Lukac M, Simmonds J, Semenov MA, Gooding MJ (2017) Temporally and genetically discrete periods of wheat sensitivity to high temperature. Front Plant Sci 8Google Scholar
  21. Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G (2014) Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens 6:10395–10412CrossRefGoogle Scholar
  22. Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485CrossRefGoogle Scholar
  23. Bettgenhaeuser J, Krattinger SG (2019) Rapid gene cloning in cereals. Theor Appl Genet 132:699–711CrossRefGoogle Scholar
  24. Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Nat Acad Sci USA106:9519–9524Google Scholar
  25. Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Finnegan EJ, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plant 14016Google Scholar
  26. Borner A, Roder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticumaestivum L.). Theor Appl Genet 95:1133–1137CrossRefGoogle Scholar
  27. Börner A, Ogbonnaya FC, Röder MS, Rasheed A, Periyannan S, Lagudah ES (2015) Aegilops tauschii introgressions in wheat. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien Introgression in Wheat. Springer International, SwitzerlandGoogle Scholar
  28. Bovill WD, Hyles J, Zwart AB, Ford BA, Perera G, Phongkham T, Brooks BJ, Rebetzke GJ, Hayden MJ, Hunt JR, Spielmeyer W (2019) Increase in coleoptile length and establishment by Lcol-A1, a genetic locus with major effect in wheat. BMC Plant Biol 19:332CrossRefPubMedPubMedCentralGoogle Scholar
  29. Braun HJ, Rajaram S, Ginkel MV (1996) CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175–183CrossRefGoogle Scholar
  30. Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26CrossRefGoogle Scholar
  31. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928CrossRefPubMedPubMedCentralGoogle Scholar
  32. Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M, Gilliham M (2014) The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. Plant J 80:516–526. Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nature 532:421–422Google Scholar
  33. Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nature 532:421–422CrossRefGoogle Scholar
  34. Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732CrossRefGoogle Scholar
  35. Cavanagh CR, Chao SM, Wang SC, Huang BE et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062CrossRefGoogle Scholar
  36. Chartres CJ, Noble A (2015) Sustainable intensification: overcoming land and water constraints on food production. Food Secur 7:235–245CrossRefGoogle Scholar
  37. Chen X (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Amme J Plant Sci 4:608–627CrossRefGoogle Scholar
  38. Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326CrossRefGoogle Scholar
  39. Chen X, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis 86:39–46CrossRefGoogle Scholar
  40. Chen S, Huang Z, Dai Y, Qin S, Gao Y, Zhang L, Gao Y, Chen J (2013) The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS ONE 8:e65122CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U (2017) Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol Breed 37:21CrossRefGoogle Scholar
  42. Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106CrossRefGoogle Scholar
  43. Coppens F, Wuyts N, Inzé D, Dhondt S (2017) Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr Opin Syst Biol 4:58–63CrossRefGoogle Scholar
  44. Cormier F, Throude M, Ravel C, Gouis J, Leveugle M, Lafarge S, Exbrayat F, Duranton N, Praud S (2015) Detection of NAM-A1 natural variants in bread wheat reveals differences in haplotype distribution between a worldwide core collection and european elite germplasm. Agronomy 5:143CrossRefGoogle Scholar
  45. Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J (2012) Wheat powdery mildew. In: Sharma I (ed) Disease resistance in wheat. CAB International, Oxfordshire, UK, pp 84–119CrossRefGoogle Scholar
  46. Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222CrossRefGoogle Scholar
  47. Cruz CD, Magarey RD, Christie DN, Fowler GA, Fernandes JM, Bockus WW, Valent B, Stack JP (2016a) Climate suitability for Magnaporthe oryzae Triticum pathotype in the United States. Plant Dis 100:1979–1987CrossRefGoogle Scholar
  48. Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD, Valent B (2016b) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum patho type of Magnaporthe oryzae. Crop Sci 56:990–1000CrossRefPubMedPubMedCentralGoogle Scholar
  49. De Leon JLD, Escoppinichi R, Zavala-Fonseca R, Castellanos T, Roder MS, Mujeeb-Kazi A (2010) Phenotypic and genotypic characterization of salt-tolerant wheat genotypes. Cereal Res Commun 38:15–22CrossRefGoogle Scholar
  50. Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379CrossRefGoogle Scholar
  51. Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 7:e33234CrossRefPubMedPubMedCentralGoogle Scholar
  52. Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454CrossRefGoogle Scholar
  53. Duveiller E, Hodson D, Sonder K, Av T (2011) An international perspective on wheat blast. Phytopathology 101:S220Google Scholar
  54. Dyck P (1977) Genetics of leaf rust reaction in three introductions of common wheat. Can J Genet Cytol 19:711–716CrossRefGoogle Scholar
  55. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807CrossRefGoogle Scholar
  56. Elshire RJ, Glaubitz JC, Poland JA, Kawamoto K, Buckler E, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379CrossRefPubMedPubMedCentralGoogle Scholar
  57. Emebiri LC, Tan MK, El-Bouhssini M, Wildman O, Jighly A, Tadesse W, Ogbonnaya FC (2017) QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. Theor Appl Genet 130:309–318CrossRefGoogle Scholar
  58. FAO (2017) The future of food and agriculture—trends and challenges. RomeGoogle Scholar
  59. Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349CrossRefGoogle Scholar
  60. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258CrossRefGoogle Scholar
  61. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360CrossRefPubMedPubMedCentralGoogle Scholar
  62. Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644CrossRefGoogle Scholar
  63. Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding 1. Butterworths, London, pp 1–35Google Scholar
  64. Garcia-Olmedo F, Delibes A, Sanchez-Monge R (1977) Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. In: Proceedings of the 8th congress of Eucarpia, pp 91–97Google Scholar
  65. Gardner KA, Lukas M, Mackay IJ (2016) A highly recombined, high-density, eight-founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments. Plant Biotechnol J 14:1406–1417CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gate P (1995) Ecophysiologie du blé: de la plante à la culture. Lavoisier, FranceGoogle Scholar
  67. Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894CrossRefGoogle Scholar
  68. Genc Y, Oldach K, Gogel B, Wallwork H, McDonald GK, Smith AB (2013) Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed 32:39–59CrossRefGoogle Scholar
  69. Genc Y, Taylor J, Rongala J, Oldach K (2014) A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS ONE 9:e98845CrossRefPubMedPubMedCentralGoogle Scholar
  70. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  71. Gonzalez-Dugo V, Zarco-Tejada P, Nicolas E, Nortes PA, Alarcon JJ, Intrigliolo DS et al (2013) Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis Agric 14:660–678CrossRefGoogle Scholar
  72. Gooding MJ (2009) The wheat crop. In: Khan K, Shewry PR (eds) Wheat: chemistry and technology, 4th edn. AACC International, Minnesota, pp 35–70Google Scholar
  73. Gooding MJ, Addisu M, Uppal RK, Snape JW, Jones HE (2012) Effect of wheat dwarfing genes on nitrogen use efficiency. J AgriSci 150:3–22Google Scholar
  74. Gorham J, Hardy C, Jones RW, Joppa L, Law C (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588CrossRefGoogle Scholar
  75. Gosman N, Steed A, Hollins T, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695CrossRefGoogle Scholar
  76. Gou J-Y, Li K, Wu K, Wang X, Lin H, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sánchez J, Fu D, Blechl A, Wallington E, Fahima T, Meeta M, Epstein L, Dubcovsky J (2015) Wheat stripe rust resistance protein wks1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27:1755–1770CrossRefPubMedPubMedCentralGoogle Scholar
  77. Gupta KP, Balyan SH, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7, 5.  https://doi.org/10.3390/agronomy7010005
  78. Hailu F, Merker A (2008) Variation in gluten strength and yellow pigment in tetraploid wheat germplasm. Genet Res Crop Evol 55:277–285Google Scholar
  79. Hammad SA, Ali OA (2014) Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann AgriSci 59:133–145Google Scholar
  80. Hao Y, Chen Z, Wang Y, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411CrossRefGoogle Scholar
  81. Hao Y, Wang Y, Chen Z, Bland D, Li S, Brown-Guedira G, Johnson J (2012) A conserved locus conditioning Soil-borne wheat mosaic virus resistance on the long arm of chromosome 5D in common wheat. Mol Breed 30:1453–1464CrossRefGoogle Scholar
  82. Hao Y, Cambron SE, Chen Z, Wang Y, Bland DE, Buntin GD, Johnson JW (2013) Characterization of new loci for Hessian fly resistance in common wheat. Theor Appl Genet 126:1067–1076CrossRefGoogle Scholar
  83. Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476CrossRefGoogle Scholar
  84. Hay R, Kirby E (1991) Convergence and synchrony, a review of the coordination of development in wheat. Aust J Agri Res 42:661–700CrossRefGoogle Scholar
  85. He Z, Joshi AK, Zhang W (2013) Climate vulnerabilities and wheat production. In: Pielke RA (ed) Climate vulnerability. Academic Press, Oxford, pp 57–67CrossRefGoogle Scholar
  86. He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018a) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882CrossRefGoogle Scholar
  87. He Y, Zhang X, Zhang Y, Ahmad D, Wu L, Jiang P, Ma H (2018b) Molecular characterization and expression of PFT, an FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology 108:730–736CrossRefGoogle Scholar
  88. Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249CrossRefGoogle Scholar
  89. Herrera-Foessel S, Singh R, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C, Calvo-Salazar V, Lagudah E (2014) Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet 1–9Google Scholar
  90. Hiebert C, Thomas J, McCallum B, Humphreys D, DePauw R, Hayden M, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091CrossRefGoogle Scholar
  91. Hossain M (2010) Global warming induced sea level rise on soil, land and crop production loss in Bangladesh. 19th world congress of soil science, soil solutions for a changing world, BrisbaneGoogle Scholar
  92. Hovmøller MS, Walter S, Bayles RA, Hubbard A, Flath K, Sommerfeldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C (2016) Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol 65:402–411CrossRefGoogle Scholar
  93. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664PubMedPubMedCentralGoogle Scholar
  94. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727CrossRefPubMedPubMedCentralGoogle Scholar
  95. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley and rice, key determinants of Na+ transport and salt tolerance. J Exp Bot 59:927–937CrossRefGoogle Scholar
  96. Huerta-Espino J, Singh R, Germán S, McCallum B, Park R, Chen W, Bhardwaj S, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 1–18Google Scholar
  97. Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969CrossRefGoogle Scholar
  98. Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 7:15662CrossRefPubMedPubMedCentralGoogle Scholar
  99. Iehisa JCM, Matsuura T, Mori IC, Takumi S (2014) Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. J Plant Physiol 171:25–34CrossRefGoogle Scholar
  100. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 ppGoogle Scholar
  101. Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, NhaniJúnior A, Castroagudín VL, Reges JTdA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun M-H, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84Google Scholar
  102. Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Belcher H, Harer J, Weitz JS, BenfeyP H (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157CrossRefPubMedPubMedCentralGoogle Scholar
  103. Jatayev S, Kurishbayev A, Zotova L, Khasanova G, Serikbay D, Zhubatkanov A, Botayeva M, Zhumalin A, Turbekova A, Soole K, Langridge P, Shavrukov Y (2017) Advantages of amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biol 17:254CrossRefPubMedPubMedCentralGoogle Scholar
  104. Ji X, Shiran B, Wan J, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant, Cell Environ 33:926–942CrossRefGoogle Scholar
  105. Jin H, Wen W, Liu J, Zhai S, Zhang Y, Yan J, Liu Z, Xia X, He Z (2016) Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front Plant Sci 7:1032PubMedPubMedCentralGoogle Scholar
  106. Jordan KW, Wang S, Lun Y, Gardiner L-J, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Geome Biol 16:48Google Scholar
  107. Juroszek P, von Tiedemann A (2013) Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol 136:21–33CrossRefGoogle Scholar
  108. Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh N (2012) Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genom 12:447–464Google Scholar
  109. Kamran A, Iqbal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197:1–26CrossRefGoogle Scholar
  110. Kassa MT, You FM, Hiebert CW, Pozniak CJ, Fobert PR, Sharpe AG, Menzies JG, Humphreys DG, Rezac Harrison N, Fellers JP, McCallum BD, McCartney CA (2017) Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biol 17:45CrossRefPubMedPubMedCentralGoogle Scholar
  111. Keller B, Wicker T, Krattinger SG (2018) Advances in wheat and pathogen genomics: implications for disease control. Annu Rev Phytopathol 56:67–87CrossRefGoogle Scholar
  112. Kirigwi F, Van Ginkel M, Brown-Guedira G, Gill B, Paulsen GM, Fritz A (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413CrossRefGoogle Scholar
  113. Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:3735CrossRefPubMedPubMedCentralGoogle Scholar
  114. Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449CrossRefGoogle Scholar
  115. Kovalchuk N, Chew W, Sornaraj P et al (2016) The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytol 211:671–687CrossRefGoogle Scholar
  116. Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA 114:E913–E921CrossRefGoogle Scholar
  117. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefGoogle Scholar
  118. Krattinger SG, Sucher J, Selter LL, Chauhan H, Zhou B, Tang M, Upadhyaya NM, Mieulet D, Guiderdoni E, Weidenbach D, Schaffrath U, Lagudah ES, Keller B (2016) The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol J 14:1261–1268CrossRefGoogle Scholar
  119. Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B (2019) Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 223:853–866CrossRefPubMedPubMedCentralGoogle Scholar
  120. Krishnan HB, Blanchette JT, Okita TW (1985) Wheat invertases: characterization of cell wall-bound and soluble forms. Plant Physiol 78:241–245CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S (2017) Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem 5:106CrossRefPubMedPubMedCentralGoogle Scholar
  122. Kumar S, Sehgal SK, Kumar U, Prasad PVV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276CrossRefGoogle Scholar
  123. Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91CrossRefGoogle Scholar
  124. Lantican MA, Dubin HJ, Morris ML (2005) Impacts of international wheat breeding research in the developing world, 1988–2002. CIMMYT, Mexico DFGoogle Scholar
  125. Law CN, Snape JW, Worland AJ (1981) Reduced fertility of wheat associated with Rht3. Plant breeding institute annual report 1980. Plant Breeding Institute, Cambridge, pp 72–73Google Scholar
  126. Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J, Findlay K, Bueno-Sancho V, Corredor-Moreno P, Harrington SA, Kangara N, Berlin A, García R, Germán SE, Hanzalová A, Hodson DP, Hovmøller MS, Huerta-Espino J, Imtiaz M, Mirza JI, Justesen AF, Niks RE, Omrani A, Patpour M, Pretorius ZA, Roohparvar R, Sela H, Singh RP, Steffenson B, Visser B, Fenwick PM, Thomas J, Wulff BBH, Saunders DGO (2018) Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol 1:13CrossRefPubMedPubMedCentralGoogle Scholar
  127. Li S, Chang X, Wang C, Jing R (2013) Mapping QTL for heat tolerance at grain filling stage in common wheat. Sci Agric Sin 46:2119–2129Google Scholar
  128. Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X (2014) Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci 54:1907–1925CrossRefGoogle Scholar
  129. Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, Liu Y, Kong Q, Zheng S, Wang Y, Qin B, Cao S, Ding Y, Shi J, Yan H, Wang X, Ran C, Ma Z (2019) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1112CrossRefGoogle Scholar
  130. Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114CrossRefGoogle Scholar
  131. Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118CrossRefGoogle Scholar
  132. Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968CrossRefGoogle Scholar
  133. Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  134. Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang Z, Laroche A (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755CrossRefGoogle Scholar
  135. Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB et al (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6:1130CrossRefGoogle Scholar
  136. Liu J, Rasheed A, He Z, Imtiaz M, Arif A, Mahmood T, Ghafoor A, Siddiqui SU, Ilyas MK, Wen W, Gao F, Xie C, Xia X (2019) Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor Appl GenetGoogle Scholar
  137. Lobell D, Gourdji S (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697CrossRefPubMedPubMedCentralGoogle Scholar
  138. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620CrossRefGoogle Scholar
  139. Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2016) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607CrossRefGoogle Scholar
  140. Ma LQ, Zhou EF, Huo NX, Zhou RH, Wang GY, Jia JZ (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117CrossRefGoogle Scholar
  141. Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511CrossRefPubMedPubMedCentralGoogle Scholar
  142. Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo M-C, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plant 1:15186CrossRefGoogle Scholar
  143. Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plant 4:662–668CrossRefGoogle Scholar
  144. Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436CrossRefGoogle Scholar
  145. Masoudi B, Mardi M, Hervan EM, Bihamta MR, Naghavi MR, Nakhoda B, Amini A (2015) QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep 33:1790–1803CrossRefGoogle Scholar
  146. Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma X-F (2018) Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1272CrossRefPubMedPubMedCentralGoogle Scholar
  147. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728CrossRefGoogle Scholar
  148. Mickky BM, Aldesuquy HS (2017) Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes. Egyp J Basic Appl Sci 4:47–54Google Scholar
  149. Milne RJ, Dibley KE, Schnippenkoetter W, Mascher M, Lui ACW, Wang L, Lo C, Ashton AR, Ryan PR, Lagudah ES (2019) The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol 179:1285–1297CrossRefGoogle Scholar
  150. Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam RK, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger SG, Keller B, Jiang Y, González MY, Zhao Y, Habekuß A, Färber S, Ordon F, Lange M, Börner A, Graner A, Reif JC, Scholz U, Mascher M, Stein N (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51:319–326CrossRefGoogle Scholar
  151. Milus EA, Seyran E, McNew R (2006) Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the south-central United States. Plant Dis 90:847–852CrossRefGoogle Scholar
  152. Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94CrossRefGoogle Scholar
  153. Mondal S, Mason RE, Huggins T, Hays DB (2015) QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica 201:123–130CrossRefGoogle Scholar
  154. Moore G (2015) Strategic pre-breeding for wheat improvement. Nat Plants 1:15018CrossRefGoogle Scholar
  155. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498CrossRefGoogle Scholar
  156. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249CrossRefGoogle Scholar
  157. Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RRC, Xu S, Chen PD, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit to food security. Adv Agron 122:179–257CrossRefGoogle Scholar
  158. Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq MS, Díaz De León JL, Ashraf M, Rajaram S (2019) Breeding strategies for structuring salinity tolerance in wheat. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 121–187Google Scholar
  159. Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673CrossRefGoogle Scholar
  160. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043CrossRefGoogle Scholar
  161. Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016) Tissue tolerance, an essential but elusive trait for salt-tolerant crops. Funct Plant Biol 43:1103–1113CrossRefGoogle Scholar
  162. Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463CrossRefGoogle Scholar
  163. Mutasa-GottgensE, and Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60, 1979–1989Google Scholar
  164. Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE 12:e0171692CrossRefPubMedPubMedCentralGoogle Scholar
  165. Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11CrossRefGoogle Scholar
  166. Nilsson HE (1991) Hand-held radiometry and IR-thermography of plant diseases in field plot experiments. Intl J Remote Sens 12:545–557CrossRefGoogle Scholar
  167. Ogbonnaya FC, van Ginkel M, Brettell R (2008) Preface: synthetics for wheat improvement. Proceedings of the 1st synthetic wheat symposium, Sept 2006. Aust J Agr Res 59:389–390Google Scholar
  168. Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Alvina GK, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME, Tsujimoto H (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122CrossRefGoogle Scholar
  169. Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T, Hagras A, Uguru MI, Agbo CU (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835CrossRefGoogle Scholar
  170. Ortiz R, Braun HJ, Crossa J, Crouch JH et al (2008a) Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet Resour Crop Evol 55:1095–1140CrossRefGoogle Scholar
  171. Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Iván Ortiz-Monasterio J, Reynolds M (2008b) Climate change: can wheat beat the heat? Agri Agri Ecosyst Environ 126:46–58CrossRefGoogle Scholar
  172. Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2018) Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ 41:919–935CrossRefGoogle Scholar
  173. Paliwal R, Roder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 125:561–575CrossRefGoogle Scholar
  174. Parent B, Shahinnia F, Maphosa L, Berger B, Rabie H, Chalmers K, Kovalchuk A, Langridge P, Fleury D (2015) Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. J Exp Bot 66:5481–5492Google Scholar
  175. Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859CrossRefGoogle Scholar
  176. Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP et al (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831CrossRefPubMedPubMedCentralGoogle Scholar
  177. Peleg ZVI, Fahima T, Krugman T, Abbo S, Yakir DAN, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population. Plant, Cell Environ 32:758–779CrossRefGoogle Scholar
  178. Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefGoogle Scholar
  179. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975CrossRefGoogle Scholar
  180. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788CrossRefGoogle Scholar
  181. Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021CrossRefPubMedPubMedCentralGoogle Scholar
  182. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253CrossRefPubMedPubMedCentralGoogle Scholar
  183. Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Giga Sci 6:1–10CrossRefGoogle Scholar
  184. Pozniak C, Hucl PJ, Stein N, Poland J, Sharpe A, Koh K, Keller B, Ronen G, Muehlbauer G, Distelfeld A, Mayer K, Budak H, Langridge P (2017) Genome assemblies of elite cultivars provides insights into the wheat pan-genome. In: Proceedings of 13th international wheat genetics symposium, 23–28 Apr, Tulln, Austria, 46Google Scholar
  185. Prescott JM, Burnett PA, Saari EE, Ransom JK, Bowman J, De Milliano WAJ, Singh RP, Bekele GT (1986) Wheat diseases and pests: a guide for field identification. CIMMYT, MexicoGoogle Scholar
  186. Qiu JW, Schürch AC, Yahiaoui N, Dong LL, Fan HJ, Zhang ZJ, Keller B, Ling HQ (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet 115:159–168CrossRefGoogle Scholar
  187. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880CrossRefGoogle Scholar
  188. Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637CrossRefGoogle Scholar
  189. Qureshi AS, McCornick PG, Qadir M, Aslam Z (2008) Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric Water Manag 95:1–10CrossRefGoogle Scholar
  190. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108:17905–17909CrossRefGoogle Scholar
  191. Rajaram S, Van Ginkel M, Fischer R (1995) CIMMYT’s wheat breeding mega-environments (ME). In: Proceedings of the 8th international wheat genetic symposium, vol 2, China Agricultural Scientech Press, Beijing, China, pp 1101–1106Google Scholar
  192. Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132:767–784CrossRefGoogle Scholar
  193. Rasheed A, Wen W, Gao FM, Zhai S, Jin H, Liu JD, Guo Q, Zhang YJ, Dreisigacker S, Xia XC, He ZH (2016) Development and validation of KASP assays for functional genes underpinning key economic traits in wheat. Theor Appl Genet 129:1843–1860CrossRefGoogle Scholar
  194. Rasheed A, Hao Y, Xia XC, Khan A, Xu Y, Varshney RK, He ZH (2017) Crop breeding chips and genotyping platforms: progress, challenges and perspectives. Mol Plant 10:1047–1064CrossRefGoogle Scholar
  195. Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He ZH, Rajaram S (2018a) Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 121:603–616CrossRefGoogle Scholar
  196. Rasheed A, Ogbonnaya FC, Lagudah E, Appels R, He Z (2018b) The goat grass genome’s role in wheat improvement. Nat Plants 4:56–58CrossRefGoogle Scholar
  197. Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580CrossRefGoogle Scholar
  198. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428CrossRefPubMedPubMedCentralGoogle Scholar
  199. Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007a) Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183CrossRefGoogle Scholar
  200. Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007b) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crop Res 100:10–23CrossRefGoogle Scholar
  201. Rebetzke GJ, Verbyla AP, Verbyla KL, Morell MK, Cavanagh CR (2014) Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J 12:219–230CrossRefGoogle Scholar
  202. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620CrossRefGoogle Scholar
  203. Riaz A, Athiyannan N, Periyannan S, Afanasenko O, Mitrofanova O, Aitken EAB, Lagudah E, Hickey LT (2016) Mining Vavilov’s treasure chest of wheat diversity for adult plant resistance to Puccinia triticina. Plant Dis 101:317–323CrossRefGoogle Scholar
  204. Riaz A, Hathorn A, Dinglasan E, Ziems L, Richard C, Singh D, Mitrofanova O, Afanasenko O, Aitken E, Godwin I, Hickey L (2017) Into the vault of the Vavilov wheats: old diversity for new alleles. Genet Resour Crop Evol 64:531–544CrossRefGoogle Scholar
  205. Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F et al (2018) High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE 13:e0186329CrossRefPubMedPubMedCentralGoogle Scholar
  206. Rinaldo A, Gilbert B, Boni R, Krattinger SG, Singh D, Park RF, Lagudah E, Ayliffe M (2017) The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence. Plant Biotechnol J 15:894–905CrossRefPubMedPubMedCentralGoogle Scholar
  207. Risk JM, Selter LL, Chauhan H, Krattinger SG, Kumlehn J, Hensel G, Viccars LA, Richardson TM, Buesing G, Troller A, Lagudah ES, Keller B (2013) The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol J 11:847–854CrossRefGoogle Scholar
  208. Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trend Plant Sci 9:606–613CrossRefGoogle Scholar
  209. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 1–23Google Scholar
  210. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124CrossRefGoogle Scholar
  211. Ruan Y-L, Jin Y, Yang Y-J, Li G-J, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955CrossRefGoogle Scholar
  212. Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:R88CrossRefPubMedPubMedCentralGoogle Scholar
  213. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786CrossRefPubMedPubMedCentralGoogle Scholar
  214. Saleem U, Khaliq I, Mahmood T, Rafique M (2006) Phenotypic and genotypic correlation coefficients between yield and yield components in wheat. J Agric Res 44:1–6Google Scholar
  215. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Geome Biol 17:221Google Scholar
  216. Sapkota S, Hao Y, Johnson J, Lopez B, Bland D, Chen Z, Sutton S, Buck J, Youmans J, Mergoum M (2019) Genetic mapping of a major gene for leaf rust resistance in soft red winter wheat cultivar AGS 2000. Mol Breed 39:8CrossRefGoogle Scholar
  217. Sardouie-Nasab S, Mohammadi-Nejad G, Nakhoda B (2014) Field screening of salinity tolerance in iranian bread wheat lines. Crop Sci 54:1489–1496CrossRefGoogle Scholar
  218. Saunders DGO, Pretorius ZA, Hovmøller MS (2019) Tackling the re-emergence of wheat stem rust in Western Europe. Commun Biol 2:51CrossRefPubMedPubMedCentralGoogle Scholar
  219. Scheben A, Batley J, Edwards D (2016) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161CrossRefGoogle Scholar
  220. Schnippenkoetter W, Lo C, Liu G, Dibley K, Chan WL, White J, Milne R, Zwart A, Kwong E, Keller B, Godwin I, Krattinger SG, Lagudah E (2017) The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnol J 15:1387–1396CrossRefPubMedPubMedCentralGoogle Scholar
  221. Schwessinger B (2017) Fundamental wheat stripe rust research in the 21st century. New Phytol 213:1625–1631CrossRefGoogle Scholar
  222. Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T, Ellis M, Amri A, Petroli CD, Wenzl P, Singh S (2015) Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS ONE 10:e0132112CrossRefPubMedPubMedCentralGoogle Scholar
  223. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14CrossRefGoogle Scholar
  224. Shah L, Ali A, Yahya M, Zhu Y, Wang S, Si H, Rahman H, Ma C (2018) Integrated control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant Pathol 67:532–548CrossRefGoogle Scholar
  225. Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Tilbrook J, Fleury D (2016) Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol 16:150CrossRefPubMedPubMedCentralGoogle Scholar
  226. Shamaya NJ, Shavrukov Y, Langridge P, Roy SJ, Tester M (2017) Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biol 17:209CrossRefPubMedPubMedCentralGoogle Scholar
  227. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395CrossRefGoogle Scholar
  228. Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203:449–467CrossRefGoogle Scholar
  229. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309CrossRefGoogle Scholar
  230. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481CrossRefGoogle Scholar
  231. Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884CrossRefGoogle Scholar
  232. Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322CrossRefGoogle Scholar
  233. Sip V, Chrpova J, Zofajova A, Milec Z, Mihalik D, Pankova K, Snape JW (2011) Evidence of selective changes in winter wheat in middle-European environments reflected by allelic diversity at loci affecting plant height and photoperiodic response. J AgriSci 149:313–326Google Scholar
  234. Sorensen CK, Howmoller MS, Leconte M, Dedryverperson F, Vallavieille CPD (2014) New races of Puccinia striiformis found in europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology 104:1042–1051CrossRefGoogle Scholar
  235. Srichumpa P, Brunner S, Keller B, Yahiaoui N (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol 139:885–895CrossRefPubMedPubMedCentralGoogle Scholar
  236. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191Google Scholar
  237. Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652CrossRefGoogle Scholar
  238. Stratonovitch P, Semenov M (2015) Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J Exp Bot 66:3599–3609Google Scholar
  239. Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, St. Amand P, Yu J, Zhang Z, Bai G (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105Google Scholar
  240. Sucher J, Boni R, Yang P, Rogowsky P, Büchner H, Kastner C, Kumlehn J, Krattinger SG, Keller B (2017) The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol J 15:489–496CrossRefGoogle Scholar
  241. Sugiura R, Noguchi N, Ishii K (2007) Correction of low-altitude thermal images applied to estimating soil water status. BiosysEng 96:301–313Google Scholar
  242. Sukumaran S, dreisigacker S, Lopes MS, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet128:353–363Google Scholar
  243. Sukumaran S, Reynolds MP, Sansaloni C (2018) Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci 9:81CrossRefPubMedPubMedCentralGoogle Scholar
  244. Sun Q, Quick J (1991) Chromosomal locations of genes for heat tolerance in tetraploid wheat. Cereal Res Commun 431–437Google Scholar
  245. Tadesse W, Ogbonnaya FC, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. Plos ONE 10:e0141339. Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL (2016) Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 60:26–45Google Scholar
  246. Talukder S, Babar M, Vijayalakshmi K, Poland J, Prasad P, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:97Google Scholar
  247. Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:233–234CrossRefGoogle Scholar
  248. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822CrossRefGoogle Scholar
  249. Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793CrossRefGoogle Scholar
  250. Thomelin P, Bonneau J, Taylor J, Choulet F, Sourdille P, Langridge P (2016) Positional cloning of a QTL, qDHY. 3BL, on chromosome 3BL for drought and heat tolerance in bread wheat. In: Proceedings of the plant and animal genome conference (PAG XXIV), San Diego, CA, USA, p P0850Google Scholar
  251. Touzy G, Rincent R, Bogard M, Lafarge S, Dubreuil P, Mini A, Deswarte J-C, Beauchêne K, Le Gouis J, Praud S (2019) Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (Triticum aestivum L.). Theor Appl Genet 132:2859–2880CrossRefGoogle Scholar
  252. Trnka M, Rötter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Žalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Change 4:637CrossRefGoogle Scholar
  253. Turki N, Shehzad T, Harrabi M, Okuno K (2015) Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica 201:29–41CrossRefGoogle Scholar
  254. Urashima AS, Igarashi S, Kato H (1994) Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–1216CrossRefGoogle Scholar
  255. Uto K, Seki H, Saito G, Kosugi Y (2013) Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE J Sel Top Appl Earth Obs Remote Sens 6:851–860CrossRefGoogle Scholar
  256. Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214:271–283CrossRefGoogle Scholar
  257. Vashev B, Gaiser T, Ghawana T, de Vries A, Stahr K (2010) Biosafor project deliverable 9: cropping potentials for saline areas in India. University of Hohenheim, Hohenheim, Pakistan and BangladeshGoogle Scholar
  258. Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175CrossRefGoogle Scholar
  259. Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP, Fuentes-Davila G, Reynolds M, Sonders K, Singh P, Payne T, Wenzl P, Sharma A, Bains NS, Singh GP, Crossa J, Singh S (2016) Unlocking the genetic diversity of Creole wheats. Sci Rep 6:23092CrossRefPubMedPubMedCentralGoogle Scholar
  260. Wang SC, Wong DB, Forrest K, Allen A, Chao SM et al (2014a) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  261. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947CrossRefGoogle Scholar
  262. Wang W, Simmonds J, Pan Q, Davidson D, He F, Battal A, Akhunova A, Trick HN, Uauy C, Akhunov E (2018) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131:2463–2475CrossRefPubMedPubMedCentralGoogle Scholar
  263. Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E (2019) Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J.  https://doi.org/10.1111/tpj.14440CrossRefPubMedPubMedCentralGoogle Scholar
  264. Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agri Res 58:567–575CrossRefGoogle Scholar
  265. Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206CrossRefGoogle Scholar
  266. Worland AJ (1986) Gibberellic acid insensitive dwarfing genes in Southern European wheats. Euphytica 35:857–866CrossRefGoogle Scholar
  267. Worland AJ, Korzun V, Roder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120CrossRefGoogle Scholar
  268. Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z (2018) SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet 131:1481–1496CrossRefGoogle Scholar
  269. Würschum T, Liu G, Boeven PHG, Longin CFH, Mirdita V, Kazman E, Zhao Y, Reif JC (2018) Exploiting the Rht portfolio for hybrid wheat breeding. Theor Appl Genet 131:1433–1442CrossRefGoogle Scholar
  270. Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878CrossRefGoogle Scholar
  271. Xu R, Sun Q, Zhang S (1996) Chromosomal location of genes for heat tolerance as measured by membrane thermostability of common wheat cv. Hope. Hereditas 18:1–3Google Scholar
  272. Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012) Mapping QTLs with epistatic effects and QTL x treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245CrossRefGoogle Scholar
  273. Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTL s for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283CrossRefGoogle Scholar
  274. Xu Y-F, Li S-S, Li L-H, Ma F-F, Fu X-Y, Shi Z-L, Xu H-X, Ma P-T, An D-G (2017) QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed 37:34CrossRefGoogle Scholar
  275. Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538CrossRefGoogle Scholar
  276. Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98CrossRefGoogle Scholar
  277. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trend Plant Sci 10:615–620CrossRefGoogle Scholar
  278. Yang D-L, Jing R-L, Chang X-P, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571Google Scholar
  279. Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H (2017) Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci 8:1111CrossRefPubMedPubMedCentralGoogle Scholar
  280. Yang Y, Luang S, Harris J, Riboni M, Li Y, Bazanova N, Hrmova M, Haefele S, Kovalchuk N, Lopato S (2018) Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnol J 16:1227–1240CrossRefGoogle Scholar
  281. Yao F, Zhang X, Ye X, Li J, Long L, Yu C, Li J, Wang Y, Wu Y, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G (2019) Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genet 20:38CrossRefPubMedPubMedCentralGoogle Scholar
  282. Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R Catalina A, González MR, Martín P (2013) Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). AgriForMeteorol171–172:281–294Google Scholar
  283. Zhang X, Shen X, Hao Y, Cai J, Ohm H, Kong L (2011) A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet 122:263–270CrossRefGoogle Scholar
  284. Zhang Y, Zhang J, Huang L, Gao A, Zhang J, Yang X, Liu W, Li X, Li L (2015) A high-density genetic map for P genome of Agropyron Gaertn. Based on specific-locus amplified fragment sequencing (SLAF-seq). Planta 242:1335–1347CrossRefGoogle Scholar
  285. Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J (2017a) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci USA 114:E9483–E9492CrossRefGoogle Scholar
  286. Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017b) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724CrossRefGoogle Scholar
  287. Zhao J, Bodner G, Rewald B (2016) Phenotyping: using machine learning for improved pairwise genotype classification based on root traits. Front Plant Sci 7:1864PubMedPubMedCentralGoogle Scholar
  288. Zhong D, Novais J, Grift TE, Bohn M, Han J (2009) Maize root complexity analysis using a support vector machine method. Comput Electron Agri 69:46–50CrossRefGoogle Scholar
  289. Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J 16:818–827CrossRefGoogle Scholar
  290. Zhu Z, Xu D, Cheng S, Gao C, Xia X, Hao Y, He Z (2018) Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in chinese wheat germplasm. Acta Agron Sin 44:473–482CrossRefGoogle Scholar
  291. Zhu Z, Hao Y, Mergoum M, Bai G, Humphreys G, Cloutier S, Xia X, He Z (2019) Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J.  https://doi.org/10.1016/jcj201906003CrossRefGoogle Scholar
  292. Zikhali M, Wingen LU, Griffiths S (2016) Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot 67:287–299CrossRefGoogle Scholar
  293. Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218:298–309CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yuanfeng Hao
    • 1
  • Awais Rasheed
    • 1
    • 2
    Email author
  • Robert Jackson
    • 3
  • Yonggui Xiao
    • 1
  • Yong Zhang
    • 1
  • Xianchun Xia
    • 1
  • Zhonghu He
    • 1
    • 2
    Email author
  1. 1.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
  2. 2.International Maize and Wheat Improvement Center (CIMMYT), C/O CAASBeijingChina
  3. 3.NIABCambridgeUK

Personalised recommendations