Neural Mechanisms

  • Dagmara HeringEmail author
  • Gino Seravalle
  • Guido Grassi
  • Krzysztof Narkiewicz
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


The last four decades of extensive investigations have revealed that sympathetic nervous system plays a critical pathogenic role in blood pressure elevation and sustained hypertension. The regional noradrenaline spillover technique was a major breakthrough in assessing human sympathetic activation and indicated that particularly two organs – the heart and the kidney are pivotal in human hypertension and heart failure. Enhanced sympathetic activation has been directly linked to hypertension mediated organ damage and associated cardiovascular and renal complications. Notably, in heart failure patients, high cardiac and renal sympathetic tone contributes to the progression of disease and mortality. There are now preliminary data to suggest that therapeutic approaches such as renal denervation, baroreflex activation therapy and carotid body removal can modulate directly the neural mechanisms underlying the pathophysiology of hypertension and heart failure.


Hypertension Heart failure Sympathetic nervous system Reflex mechanisms Target organ damage Device therapy 



Authors declare no conflict of interest.


  1. 1.
    Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62(2):347–504.PubMedGoogle Scholar
  2. 2.
    Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens. 1991;9(1):77–84.PubMedGoogle Scholar
  3. 3.
    Messerli FH, Ventura HO, Reisin E, Dreslinski GR, Dunn FG, MacPhee AA, et al. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66(1):55–60.PubMedGoogle Scholar
  4. 4.
    Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A. 1989;11(Suppl 1):75–89.PubMedGoogle Scholar
  5. 5.
    DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.PubMedGoogle Scholar
  6. 6.
    Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33(9):1058–66.PubMedGoogle Scholar
  7. 7.
    Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G, et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43(2):169–75.PubMedGoogle Scholar
  8. 8.
    Esler M, Jennings G, Biviano B, Lambert G, Hasking G. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8(Suppl 5):S39–43.PubMedGoogle Scholar
  9. 9.
    Julius S, Nesbitt S. Sympathetic overactivity in hypertension. A moving target. Am J Hypertens. 1996;9(11):113S–20S.PubMedGoogle Scholar
  10. 10.
    Rumantir MS, Jennings GL, Lambert GW, Kaye DM, Seals DR, Esler MD. The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens. 2000;18(6):717–23.PubMedGoogle Scholar
  11. 11.
    Blankestijn PJ, Man in’t Veld AJ, Tulen J, van den Meiracker AH, Boomsma F, Moleman P, et al. Support for adrenaline-hypertension hypothesis: 18 hour pressor effect after 6 hours adrenaline infusion. Lancet. 1988;2(8625):1386–9.PubMedGoogle Scholar
  12. 12.
    Greenwood JP, Stoker JB, Mary DA. Single-unit sympathetic discharge : quantitative assessment in human hypertensive disease. Circulation. 1999;100(12):1305–10.PubMedGoogle Scholar
  13. 13.
    Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti Trevano F, Dell’Oro R, et al. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33(7):1411–7.PubMedGoogle Scholar
  14. 14.
    Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. High-normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Press. 2013;22(3):183–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. Longitudinal tracking of muscle sympathetic nerve activity and its relationship with blood pressure in subjects with prehypertension. Blood Press. 2016;25(3):184–92.PubMedGoogle Scholar
  16. 16.
    Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64.PubMedGoogle Scholar
  17. 17.
    Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, et al. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014;64(1):118–24.PubMedGoogle Scholar
  18. 18.
    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.PubMedGoogle Scholar
  19. 19.
    Bertoia ML, Waring ME, Gupta PS, Roberts MB, Eaton CB. Implications of new hypertension guidelines in the United States. Hypertension. 2012;60(3):639–44.PubMedGoogle Scholar
  20. 20.
    Narkiewicz K, Grassi G, Mancia G, Hedner T. The sympathetic nervous system and cardiovascular disease. Gdańsk Via Medica Gdansk. 2008.Google Scholar
  21. 21.
    Parmer RJ, Cervenka JH, Stone RA. Baroreflex sensitivity and heredity in essential hypertension. Circulation. 1992;85(2):497–503.PubMedGoogle Scholar
  22. 22.
    Rea RF, Hamdan M. Baroreflex control of muscle sympathetic nerve activity in borderline hypertension. Circulation. 1990;82(3):856–62.PubMedGoogle Scholar
  23. 23.
    Trzebski A, Tafil M, Zoltowski M, Przybylski J. Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension. Cardiovasc Res. 1982;16(3):163–72.PubMedGoogle Scholar
  24. 24.
    Somers VK, Mark AL, Abboud FM. Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension. 1988;11(6 Pt 2):608–12.PubMedGoogle Scholar
  25. 25.
    Sinski M, Lewandowski J, Przybylski J, Bidiuk J, Abramczyk P, Ciarka A, et al. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res. 2012;35(5):487–91.PubMedGoogle Scholar
  26. 26.
    Mancia G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Grassi G. Angiotensin-sympathetic system interactions in cardiovascular and metabolic disease. J Hypertens Suppl. 2006;24(1):S51–6.PubMedGoogle Scholar
  27. 27.
    Ferrier C, Esler MD, Eisenhofer G, Wallin BG, Horne M, Cox HS, et al. Increased norepinephrine spillover into the jugular veins in essential hypertension. Hypertension. 1992;19(1):62–9.PubMedGoogle Scholar
  28. 28.
    Lambert GW, Kaye DM, Thompson JM, Turner AG, Cox HS, Vaz M, et al. Internal jugular venous spillover of noradrenaline and metabolites and their association with sympathetic nervous activity. Acta Physiol Scand. 1998;163(2):155–63.PubMedGoogle Scholar
  29. 29.
    Ferrier C, Jennings GL, Eisenhofer G, Lambert G, Cox HS, Kalff V, et al. Evidence for increased noradrenaline release from subcortical brain regions in essential hypertension. J Hypertens. 1993;11(11):1217–27.PubMedGoogle Scholar
  30. 30.
    Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, et al. The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens. 2014;8(8):561–70.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Naumczyk P, Sabisz A, Witkowska M, Graff B, Jodzio K, Gasecki D, et al. Compensatory functional reorganization may precede hypertension-related brain damage and cognitive decline: a functional magnetic resonance imaging study. J Hypertens. 2017;35(6):1252–62.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123(3):327–34.PubMedGoogle Scholar
  33. 33.
    Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.PubMedGoogle Scholar
  34. 34.
    Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34(4 Pt 2):724–8.PubMedGoogle Scholar
  35. 35.
    Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108(5):560–5.PubMedGoogle Scholar
  36. 36.
    Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53(2):205–9.PubMedGoogle Scholar
  37. 37.
    Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92(11):3206–11.PubMedGoogle Scholar
  38. 38.
    Ferguson DW, Berg WJ, Sanders JS. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol. 1990;16(5):1125–34.PubMedGoogle Scholar
  39. 39.
    Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73(4):615–21.PubMedGoogle Scholar
  40. 40.
    Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2000;101(5):558–69.PubMedGoogle Scholar
  41. 41.
    Lamba S, Abraham WT. Alterations in adrenergic receptor signaling in heart failure. Heart Fail Rev. 2000;5(1):7–16.PubMedGoogle Scholar
  42. 42.
    Colucci WS. The effects of norepinephrine on myocardial biology: implications for the therapy of heart failure. Clin Cardiol. 1998;21(12 Suppl 1):I20–4.PubMedGoogle Scholar
  43. 43.
    Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26(5):1257–63.PubMedGoogle Scholar
  44. 44.
    Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B. Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26(9):906–13.PubMedGoogle Scholar
  45. 45.
    Setoguchi S, Stevenson LW. Hospitalizations in patients with heart failure: who and why. J Am Coll Cardiol. 2009;54(18):1703–5.PubMedGoogle Scholar
  46. 46.
    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.PubMedGoogle Scholar
  47. 47.
    Weber KT. Mechanisms of disease—aldosterone in congestive heart failure. N Engl J Med. 2001;345(23):1689–97.PubMedGoogle Scholar
  48. 48.
    Ferguson DW, Abboud FM, Mark AL. Selective impairment of baroreflex-mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation. 1984;69(3):451–60.PubMedGoogle Scholar
  49. 49.
    Mark AL. Sympathetic dysregulation in heart failure: mechanisms and therapy. Clin Cardiol. 1995;18(3 Suppl):I):I3–8.PubMedGoogle Scholar
  50. 50.
    Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 1997;96(10):3450–8.PubMedGoogle Scholar
  51. 51.
    Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87(6):1953–7.PubMedPubMedCentralGoogle Scholar
  52. 52.
    vandeBorne P, Oren R, Anderson EA, Mark AL, Somers VK. Tonic chemoreflex activation does not contribute to elevated muscle sympathetic nerve activity in heart failure. Circulation. 1996;94(6):1325–8.Google Scholar
  53. 53.
    Narkiewicz K, Pesek CA, van de Borne PJ, Kato M, Somers VK. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation. 1999;100(3):262–7.PubMedGoogle Scholar
  54. 54.
    Franchitto N, Despas F, Labrunee M, Roncalli J, Boveda S, Galinier M, et al. Tonic chemoreflex activation contributes to increased sympathetic nerve activity in heart failure-related anemia. Hypertension. 2010;55(4):1012–7.PubMedGoogle Scholar
  55. 55.
    Despas F, Lambert E, Vaccaro A, Labrunee M, Franchitto N, Lebrin M, et al. Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens. 2012;30(4):753–60.PubMedGoogle Scholar
  56. 56.
    Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, et al. Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction. J Card Fail. 2009;15(4):279–85.PubMedGoogle Scholar
  57. 57.
    Ponikowski P, Chua TP, Anker SD, Francis DP, Doehner W, Banasiak W, et al. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001;104(5):544–9.PubMedGoogle Scholar
  58. 58.
    Shepherd JT. Heart failure: role of cardiovascular reflexes. Cardioscience. 1990;1(1):7–12.PubMedGoogle Scholar
  59. 59.
    Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.PubMedGoogle Scholar
  60. 60.
    Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 2001;22(13):1136–43.PubMedGoogle Scholar
  61. 61.
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.PubMedGoogle Scholar
  62. 62.
    Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9.PubMedGoogle Scholar
  63. 63.
    Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Bohm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, et al. First report of the Global SYMPLICITY Registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension. 2015;65(4):766–74.PubMedGoogle Scholar
  65. 65.
    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.PubMedGoogle Scholar
  66. 66.
    Desch S, Okon T, Heinemann D, Kulle K, Rohnert K, Sonnabend M, et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65(6):1202–8.PubMedGoogle Scholar
  67. 67.
    Mathiassen ON, Vase H, Bech JN, Christensen KL, Buus NH, Schroeder AP, et al. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24-h blood pressure-based trial. J Hypertens. 2016;34(8):1639–47.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–65.PubMedGoogle Scholar
  69. 69.
    Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–70.PubMedGoogle Scholar
  70. 70.
    Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.PubMedGoogle Scholar
  71. 71.
    Hopper I, Gronda E, Hoppe UC, Rundqvist B, Marwick TH, Shetty S, et al. Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-month outcomes from the simplicity HF feasibility study. J Card Fail. 2017;23(9):702–7.PubMedGoogle Scholar
  72. 72.
    Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8.PubMedGoogle Scholar
  73. 73.
    Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8.PubMedGoogle Scholar
  74. 74.
    Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.PubMedGoogle Scholar
  75. 75.
    Wallbach M, Halbach M, Reuter H, Passauer J, Luders S, Bohning E, et al. Baroreflex activation therapy in patients with prior renal denervation. J Hypertens. 2016;34(8):1630–8.PubMedGoogle Scholar
  76. 76.
    Weipert KF, Most A, Dorr O, Helmig I, Elzien M, Krombach G, et al. Rescue baroreflex activation therapy after Stanford B aortic dissection due to therapy-refractory hypertension. J Am Soc Hypertens. 2016;10(6):490–2.PubMedGoogle Scholar
  77. 77.
    Floyd CN, Adeel MY, Wolff CB, Julu P, Shah M, Collier DJ, et al. First-in-man treatment of severe blood pressure variability with baroreflex activation therapy. Int J Cardiol. 2016;220:577–9.PubMedGoogle Scholar
  78. 78.
    Gronda E, Seravalle G, Brambilla G, Costantino G, Casini A, Alsheraei A, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail. 2014;16(9):977–83.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Gronda E, Seravalle G, Trevano FQ, Costantino G, Casini A, Alsheraei A, et al. Long-term chronic baroreflex activation: persistent efficacy in patients with heart failure and reduced ejection fraction. J Hypertens. 2015;33(8):1704–8.PubMedGoogle Scholar
  80. 80.
    Narkiewicz K, Ratcliffe LE, Hart EC, Briant LJ, Chrostowska M, Wolf J, et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl Sci. 2016;1(5):313–24.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Niewinski P, Janczak D, Rucinski A, Jazwiec P, Sobotka PA, Engelman ZJ, et al. Carotid body removal for treatment of chronic systolic heart failure. Int J Cardiol. 2013;168(3):2506–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dagmara Hering
    • 1
    • 2
    Email author
  • Gino Seravalle
    • 3
  • Guido Grassi
    • 4
    • 5
  • Krzysztof Narkiewicz
    • 1
  1. 1.Department of Hypertension and DiabetologyMedical University of GdanskGdanskPoland
  2. 2.Baker IDI Heart and Diabetes InstituteMelbourneAustralia
  3. 3.Istituto Auxologico Italiano IRCCS Ospedale San LucaMilanItaly
  4. 4.Clinica Medica, Department of Medicine and SurgeryUniversity Milano-BicoccaMilanItaly
  5. 5.IRCCS Multimedica, Sesto San GiovanniMilanItaly

Personalised recommendations