Hemodynamic Mechanisms

  • Tatiana KuznetsovaEmail author
  • Nicholas Cauwenberghs
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


It is of importance to better understand the pathophysiological mechanisms leading to left ventricular (LV) maladaptation and the timely identification and management of patients at risk for developing symptomatic heart failure (HF). High blood pressure is the major modifiable risk factor for overt HF. In patients with hypertension, the process of myocardial remodeling/dysfunction starts long before the onset of HF symptoms. The long-term increased afterload (high pressure) and, consequently, the chronically increased cardiac performance lead to LV concentric remodeling, decreased longitudinal systolic deformation (strain), diastolic dysfunction, and increased LV oxygen requirements. All these processes eventually result in symptomatic HF. Recent studies revealed a high prevalence of asymptomatic (subclinical) LV systolic and diastolic dysfunction/remodeling in the community. In this chapter we discussed the different aspects of cardiac maladaptive responses to a chronically increased hemodynamic load. We also illustrated a complex interaction between the different components of blood pressure, arterial properties, and echocardiographic indexes reflecting LV function and structure.


Hemodynamic load Wall stress Concentric remodeling Diastolic dysfunction Deformation (strain) Ventricular-arterial coupling 


  1. 1.
    de Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke and efficiency both remain nearly optimal despite altered vascular loading. Am J Phys. 1993;264:H1817–24.Google Scholar
  2. 2.
    Choi HF, D’hooge J, Rademakers FE, Claus P. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2638–41.PubMedGoogle Scholar
  3. 3.
    Spotnitz HM. Macro design, structure, and mechanics of the left ventricle. J Thorac Cardiovasc Surg. 2000;119:1053–77.CrossRefGoogle Scholar
  4. 4.
    Gould KL, Kennedy JW, Frimer M, Pollack GH, Dodge HT. Analysis of wall dynamics and directional components of left ventricular contraction in man. Am J Cardiol. 1976;38:322–31.CrossRefGoogle Scholar
  5. 5.
    Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, Aragam J, Benjamin EJ, Solomon SD, Vasan RS. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging. 2013;6:692–9.CrossRefGoogle Scholar
  6. 6.
    Sengupta PP. Left ventricular transmural mechanics: tracking opportunities in-depth. J Am Soc Echocardiogr. 2009;22:1022–4.CrossRefGoogle Scholar
  7. 7.
    Lumens J, Prinzen FW, Delhaas T. Longitudinal strain: “think globally, track locally”. JACC Cardiovasc Imaging. 2015;8:1360–3.CrossRefGoogle Scholar
  8. 8.
    Sengupta PP, Narula J. Reclassifying heart failure: predominantly subendocardial, subepicardial, and transmural. Heart Fail Clin. 2008;4:379–82.CrossRefGoogle Scholar
  9. 9.
    Donal E, Bergerot C, Thibault H, Ernande L, Loufoua J, Augeul L, Ovize M, Derumeaux G. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. Eur J Echocardiogr. 2009;10:914–21.CrossRefGoogle Scholar
  10. 10.
    Ballo P, Quatrini I, Giacomin E, Motto A, Mondillo S. Circumferential versus longitudinal systolic function in patients with hypertension: a nonlinear relation. J Am Soc Echocardiogr. 2007;20:298–306.CrossRefGoogle Scholar
  11. 11.
    Baltabaeva A, Marciniak M, Bijnens B, Moggridge J, He FJ, Antonios TF, MacGregor GA, Sutherland GR. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur J Echocardiogr. 2008;9:501–8.PubMedGoogle Scholar
  12. 12.
    Cauwenberghs N, Knez J, Tikhonoff V, D’hooge J, Kloch-Badelek M, Thijs L, Stolarz-Skrzypek K, Haddad F, Wojciechowska W, Swierblewska E, Casiglia E, Kawecka-Jaszcz K, Narkiewicz K, Staessen JA, Kuznetsova T. Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. J Hypertens. 2016;34:762–71.Google Scholar
  13. 13.
    Kawaguchi M, Hay I, Fetics BJ, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.CrossRefGoogle Scholar
  14. 14.
    Davies JE, Baksi J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Foale RA, Malik IS, Tyberg JV, Parker KH, Mayet J, Hughes AD. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. Am J Physiol Heart Circ Physiol. 2010;298:H580–6.CrossRefGoogle Scholar
  15. 15.
    Schultz MG, Davies JE, Hardikar A, Pitt S, Moraldo M, Dhutia N, Hughes AD, Sharman JE. Aortic reservoir pressure corresponds to cyclic changes in aortic volume: physiological validation in humans. Arterioscler Thromb Vasc Biol. 2014;34:1597–603.CrossRefGoogle Scholar
  16. 16.
    Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol. 2003;284:H1358–68.CrossRefGoogle Scholar
  17. 17.
    Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.Google Scholar
  18. 18.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.CrossRefGoogle Scholar
  19. 19.
    Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, Benjamin EJ, Mitchell GF, Vasan RS. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4(11):e002189.CrossRefGoogle Scholar
  20. 20.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. A systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.CrossRefGoogle Scholar
  21. 21.
    Moriarty TF. The law of Laplace. Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res. 1980;46:321–31.CrossRefGoogle Scholar
  22. 22.
    Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens Res. 1999;22:1–9.CrossRefGoogle Scholar
  23. 23.
    Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.CrossRefGoogle Scholar
  24. 24.
    Kuznetsova T, Thijs L, Knez J, Cauwenberghs N, Petit T, Gu YM, Zhang Z, Staessen JA. Longitudinal changes in left ventricular diastolic function in a general population. Circ Cardiovasc Imaging. 2015;8(4):e002882.Google Scholar
  25. 25.
    Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-Catheterization Study. Circulation. 2000;102:1788–94.CrossRefGoogle Scholar
  26. 26.
    Cauwenberghs N, Knez J, D’hooge J, Thijs L, Yang WY, Wei FF, Zhang ZY, Staessen JA, Kuznetsova T. Longitudinal changes in LV structure and diastolic function in relation to arterial properties in general population. JACC Cardiovasc Imaging. 2017;10:1307–16.Google Scholar
  27. 27.
    Shim CY, Park S, Choi D, Yang WI, Cho IJ, Choi EY, Chung N, Ha JW. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57:1226–33.CrossRefGoogle Scholar
  28. 28.
    Borlaug BA. Sex, load, and relaxation: are women more susceptible to load-dependent diastolic dysfunction? J Am Coll Cardiol. 2011;57:1234–6.CrossRefGoogle Scholar
  29. 29.
    Hayward CS, Kalnins WV, Kelly RP. Gender-related differences in left ventricular chamber function. Cardiovasc Res. 2001;49:340–50.CrossRefGoogle Scholar
  30. 30.
    Kuznetsova T, Cauwenberghs N, Knez J, Yang WY, Herbots L, D’hooge J, Haddad F, Thijs L, Voigt JU, Staessen J. Additive prognostic value of left ventricular systolic dysfunction in a population-based cohort. Circ Cardiovasc Imaging. 2016;9(7):e004661.Google Scholar
  31. 31.
    Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the vascular system in terms of pressure-volumes relationships. In: Ventriculo-vascular coupling: clinical, physiologic, and engineering aspects. New York: Springer Verlag; 1987. p. 210–39.CrossRefGoogle Scholar
  32. 32.
    Chantler PD, Melenovsky V, Schulman SP, Gerstenblith G, Becker LC, Ferrucci L, Fleg JL, Lakatta EG, Najjar SS. The sex-specific impact of systolic hypertension and systolic blood pressure on arterial-ventricular coupling at rest and during exercise. Am J Physiol Heart Circ Physiol. 2008;295:H145–53.CrossRefGoogle Scholar
  33. 33.
    Cohen-Solal A, Caviezel B, Himbert D, Gourgon R. Left ventricular-arterial coupling in systemic hypertension: analysis by means of arterial effective and left ventricular elastances. J Hypertens. 1994;12:591–600.CrossRefGoogle Scholar
  34. 34.
    Kuznetsova T, D’hooge J, Kloch-Badelek M, Sakiewicz W, Thijs L, Staessen JA. Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise. J Am Soc Echocardiogr. 2012;25:882–90.Google Scholar
  35. 35.
    Saba PS, Ganau A, Devereux RB, Pini R, Pickering TG, Roman MJ. Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension. J Hypertens. 1999;17:1007–15.CrossRefGoogle Scholar
  36. 36.
    Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23:351–5.CrossRefGoogle Scholar
  37. 37.
    Urheim S, Rabben SI, Skulstad H, Lyseggen E, Ihlen H, Smiseth OA. Regional myocardial work by strain Doppler echocardiography and LV pressure: a new method for quantifying myocardial function. Am J Physiol Heart Circ Physiol. 2005;288:H2375–80.CrossRefGoogle Scholar
  38. 38.
    Aylward PE, McRitchie RJ, Chalmers JP, West MJ. Baroreflex control of myocardial contractility in conscious normotensive and renal hypertensive rabbits. Hypertension. 1983;5:916–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular SciencesUniversity of LeuvenLeuvenBelgium

Personalised recommendations