Advertisement

Carotid Baroreceptor Stimulation

  • Jens JordanEmail author
  • Jens Tank
  • Hannes Reuter
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Baroreflex activation through electrical carotid sinus stimulation has been developed for resistant arterial hypertension and heart failure management. Electrical carotid sinus stimulation lowered blood pressure in various hypertensive animal models and improved cardiac remodeling and survival in experimental heart failure. In human mechanistic profiling studies, electrical carotid sinus stimulation was shown to lower blood pressure through sympathetic inhibition; however, the response showed substantial interindividual variability. The first-generation device reduced blood pressure in controlled and uncontrolled clinical trials. Controlled clinical trials proving efficacy in blood pressure reduction do not exist for the currently available second-generation carotid sinus stimulator. Investigations in heart failure patients showed symptomatic improvements; however, echocardiography measurements did not change significantly. Overall, electrical carotid sinus stimulation is a promising approach. Yet, data from properly controlled trials is required before introducing electrical carotid sinus stimulation in clinical routine.

Keywords

Baroreflex Chemoreflex Autonomic nervous system Parasympathetic nervous system Sympathetic nervous system Vasopressin 

References

  1. 1.
    Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87:1953–7.CrossRefGoogle Scholar
  2. 2.
    Jordan J, Tank J, Diedrich A, Robertson D, Shannon JR. Vasopressin and blood pressure in humans. Hypertension. 2000;36:E3–4.PubMedGoogle Scholar
  3. 3.
    Gardiner SM, Bennett T. The contribution of the autonomic nervous system, the renin-angiotensin system and vasopressin to the maintenance of arterial blood pressure in adrenalectomized wistar rats. Clin Sci. 1986;71:357–65.CrossRefGoogle Scholar
  4. 4.
    Wallin BG, Sundlof G, Delius W. The effect of carotid sinus nerve stimulation on muscle and skin nerve sympathetic activity in man. Pflugers Arch. 1975;358:101–10.CrossRefGoogle Scholar
  5. 5.
    Bradbury S, Eggleston C. Postural hypotension: a report of three cases. Am Heart J. 1925;1:73–86.CrossRefGoogle Scholar
  6. 6.
    Robertson D, Hollister AS, Biaggioni I, Netterville JL, Mosqueda-Garcia R, Robertson RM. The diagnosis and treatment of baroreflex failure. N Engl J Med. 1993;329:1449–55.CrossRefGoogle Scholar
  7. 7.
    Heusser K, Tank J, Luft FC, Jordan J. Baroreflex failure. Hypertension. 2005;45:834–9.CrossRefGoogle Scholar
  8. 8.
    Cowley AJ, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res. 1973;32:564–76.CrossRefGoogle Scholar
  9. 9.
    Krieger EM. Neurogenic hypertension in the rat. Circ Res. 1964;15:511–21.CrossRefGoogle Scholar
  10. 10.
    Thrasher TN. Unloading arterial baroreceptors causes neurogenic hypertension. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1044–53.CrossRefGoogle Scholar
  11. 11.
    Grassi G, Seravalle G, Dell’Oro R, Turri C, Bolla GB, Mancia G. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension. 2000;36:538–42.Google Scholar
  12. 12.
    Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, Spaziani D, Cuspidi C, Mancia G. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177:1020–5.CrossRefGoogle Scholar
  13. 13.
    Bristow JD, Honour AJ, Pickering GW, Sleight P, Smyth HS. Diminished baroreflex sensitivity in high blood pressure. Circulation. 1969;39:48–54.CrossRefGoogle Scholar
  14. 14.
    Robertson GL, Ganguly A. Osmoregulation and baroregulation of plasma vasopressin in essential hypertension. J Cardiovasc Pharmacol. 1986;8(Suppl 7):S87–91.CrossRefGoogle Scholar
  15. 15.
    Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, Del Bo A, Sala C, Bolla GB, Pozzi M. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92:3206–11.CrossRefGoogle Scholar
  16. 16.
    Ferguson DW, Berg WJ, Roach PJ, Oren RM, Mark AL. Effects of heart failure on baroreflex control of sympathetic neural activity. Am J Cardiol. 1992;69:523–31.CrossRefGoogle Scholar
  17. 17.
    Jordan J, Tank J, Hohenbleicher H, Toka HR, Schroeder C, Sharma AM, Luft FC. Heterogeneity of autonomic regulation in hypertension and neurovascular contact. J Hypertens. 2002;20:701–6.CrossRefGoogle Scholar
  18. 18.
    Goldsmith SR. Baroreflex loading maneuvers do not suppress increased plasma arginine vasopressin in patients with congestive heart failure. J Am Coll Cardiol. 1992;19:1180–4.CrossRefGoogle Scholar
  19. 19.
    Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, Wiltse C, Wright TJ. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (moxcon). Eur J Heart Fail. 2003;5:659–67.CrossRefGoogle Scholar
  20. 20.
    Peters TK, Koralewski HE, Zerbst E. The principle of electrical carotid sinus nerve stimulation: a nerve pacemaker system for angina pectoris and hypertension therapy. Ann Biomed Eng. 1980;8:445–58.CrossRefGoogle Scholar
  21. 21.
    Rothfeld EL, Parsonnet V, Raman KV, Zucker IR, Tiu R. The effect of carotid sinus nerve stimulation on cardiovascular dynamics in man. Angiology. 1969;20:213–8.CrossRefGoogle Scholar
  22. 22.
    Schmidli J, Savolainen H, Eckstein F, Irwin E, Peters TK, Martin R, Kieval R, Cody R, Carrel T. Acute device-based blood pressure reduction: electrical activation of the carotid baroreflex in patients undergoing elective carotid surgery. Vascular. 2007;15:63–9.Google Scholar
  23. 23.
    Kansal N, Clair DG, Jaye DA, Scheiner A. Carotid baroreceptor stimulation blood pressure response mapped in patients undergoing carotid endarterectomy (c-map study). Auton Neurosci. 2016;201:60–7.CrossRefGoogle Scholar
  24. 24.
    Tordoir JH, Scheffers I, Schmidli J, Savolainen H, Liebeskind U, Hansky B, Herold U, Irwin E, Kroon AA, de LP, Peters TK, Kieval R, Cody R. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc Surg. 2007;33:414–21.CrossRefGoogle Scholar
  25. 25.
    Wilks SJ, Hara SA, Ross EK, Nicolai EN, Pignato PA, Cates AW, Ludwig KA. Non-clinical and pre-clinical testing to demonstrate safety of the barostim neo electrode for activation of carotid baroreceptors in chronic human implants. Front Neurosci. 2017;11:438.CrossRefGoogle Scholar
  26. 26.
    Heusser K, Tank J, Brinkmann J, Menne J, Kaufeld J, Linnenweber-Held S, Beige J, Wilhelmi M, Diedrich A, Haller H, Jordan J. Acute response to unilateral unipolar electrical carotid sinus stimulation in patients with resistant arterial hypertension. Hypertension. 2016;67:585–91.CrossRefGoogle Scholar
  27. 27.
    Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;43:306–11.CrossRefGoogle Scholar
  28. 28.
    Lohmeier TE, Hildebrandt DA, Dwyer TM, Barrett AM, Irwin ED, Rossing MA, Kieval RS. Renal denervation does not abolish sustained baroreflex-mediated reductions in arterial pressure. Hypertension. 2007;49:373–9.CrossRefGoogle Scholar
  29. 29.
    Lohmeier TE, Hildebrandt DA, Dwyer TM, Iliescu R, Irwin ED, Cates AW, Rossing MA. Prolonged activation of the baroreflex decreases arterial pressure even during chronic adrenergic blockade. Hypertension. 2009;53:833–8.CrossRefGoogle Scholar
  30. 30.
    Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49:1307–14.CrossRefGoogle Scholar
  31. 31.
    Iliescu R, Tudorancea I, Irwin ED, Lohmeier TE. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. Am J Physiol Heart Circ Physiol. 2013;305:H1080–8.CrossRefGoogle Scholar
  32. 32.
    Lohmeier TE, Dwyer TM, Hildebrandt DA, Irwin ED, Rossing MA, Serdar DJ, Kieval RS. Influence of prolonged baroreflex activation on arterial pressure in angiotensin hypertension. Hypertension. 2005;46:1194–200.CrossRefGoogle Scholar
  33. 33.
    Lohmeier TE, Liu B, Hildebrandt DA, Cates AW, Georgakopoulos D, Irwin ED. Global- and renal-specific sympathoinhibition in aldosterone hypertension. Hypertension. 2015;65:1223–30.CrossRefGoogle Scholar
  34. 34.
    Hildebrandt DA, Irwin ED, Lohmeier TE. Prolonged baroreflex activation abolishes salt-induced hypertension after reductions in kidney mass. Hypertension. 2016;68:1400–6.CrossRefGoogle Scholar
  35. 35.
    Lohmeier TE, Iliescu R, Tudorancea I, Cazan R, Cates AW, Georgakopoulos D, Irwin ED. Chronic interactions between carotid baroreceptors and chemoreceptors in obesity hypertension. Hypertension. 2016;68:227–35.CrossRefGoogle Scholar
  36. 36.
    Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD, Rossing MA. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension. 2007;50:904–10.CrossRefGoogle Scholar
  37. 37.
    Sabbah HN, Gupta RC, Imai M, Irwin ED, Rastogi S, Rossing MA, Kieval RS. Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure. Circ Heart Fail. 2011;4:65–70.CrossRefGoogle Scholar
  38. 38.
    Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, Peters T, Sweep FC, Haller H, Pichlmaier AM, Luft FC, Jordan J. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.CrossRefGoogle Scholar
  39. 39.
    Wustmann K, Kucera JP, Scheffers I, Mohaupt M, Kroon AA, de Leeuw PW, Schmidli J, Allemann Y, Delacretaz E. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension. 2009;54:530–6.CrossRefGoogle Scholar
  40. 40.
    Gronda E, Seravalle G, Brambilla G, Costantino G, Casini A, Alsheraei A, Lovett EG, Mancia G, Grassi G. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail. 2014;16:977–83.CrossRefGoogle Scholar
  41. 41.
    Gronda E, Seravalle G, Trevano FQ, Costantino G, Casini A, Alsheraei A, Lovett EG, Vanoli E, Mancia G, Grassi G. Long-term chronic baroreflex activation: persistent efficacy in patients with heart failure and reduced ejection fraction. J Hypertens. 2015;33:1704–8.CrossRefGoogle Scholar
  42. 42.
    Dell’Oro R, Gronda E, Seravalle G, Costantino G, Alberti L, Baronio B, Staine T, Vanoli E, Mancia G, Grassi G. Restoration of normal sympathetic neural function in heart failure following baroreflex activation therapy: final 43-month study report. J Hypertens. 2017;35:2532–6.Google Scholar
  43. 43.
    Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, Luft FC, Haller H, Menne J, Engeli S, Ceral J, Eckert S, Erglis A, Narkiewicz K, Philipp T, de Leeuw PW. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56:1254–8.CrossRefGoogle Scholar
  44. 44.
    Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, de Leeuw PW, Sica DA. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–73.CrossRefGoogle Scholar
  45. 45.
    de Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H, Kroon AA. Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension. 2017;69:836–43.CrossRefGoogle Scholar
  46. 46.
    Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, Cates AW, Lovett EG, Haller H. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.CrossRefGoogle Scholar
  47. 47.
    Wallbach M, Lehnig LY, Schroer C, Luders S, Bohning E, Muller GA, Wachter R, Koziolek MJ. Effects of baroreflex activation therapy on ambulatory blood pressure in patients with resistant hypertension. Hypertension. 2016;67:701–9.CrossRefGoogle Scholar
  48. 48.
    Wallbach M, Halbach M, Reuter H, Passauer J, Lueders S, Boehning E, Zenker D, Mueller GA, Wachter R, Koziolek MJ. Baroreflex activation therapy in patients with prior renal denervation. J Hypertens. 2016;34(8):1630–8.CrossRefGoogle Scholar
  49. 49.
    Beige J, Jentzsch T, Wendt R, Hennig G, Koziolek M, Wallbach M. Blood pressure after blinded, randomized withdrawal, and resumption of baroreceptor-activating therapy. J Hypertens. 2017;35(7):1496–501.CrossRefGoogle Scholar
  50. 50.
    Wachter R, Halbach M, Bakris GL, Bisognano JD, Haller H, Beige J, Kroon AA, Nadim MK, Lovett EG, Schafer JE, de Leeuw PW. An exploratory propensity score matched comparison of second-generation and first-generation baroreflex activation therapy systems. J Am Soc Hypertens. 2017;11:81–91.CrossRefGoogle Scholar
  51. 51.
    Bisognano JD, Kaufman CL, Bach DS, Lovett EG, de LP. Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and united states trials of the rheos system. J Am Coll Cardiol. 2011;57:1787–8.CrossRefGoogle Scholar
  52. 52.
    Wallbach M, Lehnig LY, Schroer C, Helms HJ, Luders S, Patschan D, Patschan S, Muller GA, Wachter R, Koziolek MJ. Effects of baroreflex activation therapy on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Hypertens. 2015;33:181–6.CrossRefGoogle Scholar
  53. 53.
    Wallbach M, Lehnig LY, Schroer C, Hasenfuss G, Muller GA, Wachter R, Koziolek MJ. Impact of baroreflex activation therapy on renal function—a pilot study. Am J Nephrol. 2014;40:371–80.CrossRefGoogle Scholar
  54. 54.
    May M, Ahrens J, Menne J, Haller H, Beige J, Eckert S, Jordan J, Engeli S. Limited acute influences of electrical baroreceptor activation on insulin sensitivity and glucose delivery: a randomized, double-blind, cross-over clinical study. Diabetes. 2014;63(8):2833–7.CrossRefGoogle Scholar
  55. 55.
    Wallbach M, Lehnig LY, Helms HJ, Schroer C, Muller GA, Wachter R, Koziolek MJ. Long-term effects of baroreflex activation therapy on glucose metabolism. Acta Diabetol. 2015;52:829–35.CrossRefGoogle Scholar
  56. 56.
    Alnima T, de Leeuw PW, Tan FE, Kroon AA, Rheos Pivotal Trial Investigators. Renal responses to long-term carotid baroreflex activation therapy in patients with drug-resistant hypertension. Hypertension. 2013;61(6):1334–9.  https://doi.org/10.1161/HYPERTENSIONAHA.113.01159. Epub 2013 Apr 15. PubMed PMID: 23589562.CrossRefPubMedGoogle Scholar
  57. 57.
    Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, Muller-Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R, Little WC. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015;3:487–96.CrossRefGoogle Scholar
  58. 58.
    Zile MR, Abraham WT, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, Muller-Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R, Little WC. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy. Eur J Heart Fail. 2015;17:1066–74.CrossRefGoogle Scholar
  59. 59.
    Halbach M, Fritz T, Madershahian N, Pfister R, Reuter H. Improvement of left ventricular ejection fraction by baroreflex activation therapy in a young man with dilated cardiomyopathy. Int Heart J. 2017;58(6):998–1000.CrossRefGoogle Scholar
  60. 60.
    Weipert KF, Andrick J, Chasan R, Gemein C, Most A, Hamm CW, Erkapic D, Schmitt J. Baroreceptor stimulation in a patient with preexisting subcutaneous implantable cardioverter defibrillator. Pacing Clin Electrophysiol. 2018;41(1):90–2.CrossRefGoogle Scholar
  61. 61.
    Kuffer L, Steven D, Halbach M, Luker J, van den Bruck JH, Sultan A. Combination of a subcutaneous ICD in a patient with a baroreceptor activation device: feasibility, safety, and precautions: a case report. Pacing Clin Electrophysiol. 2017;40(12):1486–8.CrossRefGoogle Scholar
  62. 62.
    Devireddy CM, Bates MC. Experience with an innovative new food and drug administration pathway for first-in-human studies: carotid baroreceptor amplification for resistant hypertension. JACC Cardiovasc Interv. 2014;7:1328–30.CrossRefGoogle Scholar
  63. 63.
    Spiering W, Williams B, Van der Heyden J, van Kleef M, Lo R, Versmissen J, Moelker A, Kroon A, Reuter H, Ansel G, Stone GW, Bates M. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet. 2017;390(10113):2655–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Aerospace Medicine, German Aerospace Center (DLR) and Chair of Aerospace MedicineUniversity of CologneCologneGermany
  2. 2.Department for Cardiology, Angiology, Pneumology and Intensive Care MedicineUniversity of CologneCologneGermany
  3. 3.Department of Cardiology and Intensive Care MedicineEv. Krankenhaus Köln-WeyertalCologneGermany

Personalised recommendations