Advertisement

Regression Under Treatment of Left Ventricular Hypertrophy and Other Structural Alterations

  • Maria Lorenza MuiesanEmail author
  • Anna Paini
  • Fabio Bertacchini
  • Claudia Agabiti Rosei
  • Massimo Salvetti
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Hypertension-induced mortality and morbidity are produced through the impact of increased blood pressure (BP) on the heart and other target organs. Evaluation of early damage (TOD) in these target organs is an important step in a risk stratification strategy to reduce cardiovascular and renal events. Maladaptation of the heart in response to chronic hypertension is often associated with deleterious disorders, including cardiac fibrosis, chronic inflammatory response, and cardiac dysfunction, leading to heart failure, which remains to be a leading cause of mortality and morbidity around the world.

Among a panel of TOD included in the 2013 guidelines and based on availability, cost, and clinical significance, the evaluation of left ventricular hypertrophy (LVH) by electrocardiography and, possibly, the assessment of left ventricular mass by echocardiography are among the minimal recommended, in addition to urinary albumin excretion and glomerular filtration rate. Other cardiac structural alterations, such as left atrial enlargement, may have a clinical relevance.

The regression of LVH occurring during treatment reflects the treatment-induced reduction of morbid and fatal CV events, thereby offering valuable information on whether patients are more or less effectively protected by the target BP achieved and by the treatment strategies adopted. In the future precise targets to treat pathologic cardiac hypertrophy and heart failure more effectively are warranted.

Keywords

Arterial hypertension Target organ damage Regression Left ventricular mass Left ventricular hypertrophy Left atrium Antihypertensive treatment 

References

  1. 1.
    Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.CrossRefGoogle Scholar
  2. 2.
    Agabiti-Rosei E, Muiesan ML, Salvetti M. Evaluation of sub clinical target organ damage for risk assessment and treatment in the hypertensive patients: left ventricular hypertrophy. J Am Soc Nephrol. 2006;17:S104–8.CrossRefGoogle Scholar
  3. 3.
    Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.CrossRefGoogle Scholar
  4. 4.
    Verdecchia P, Angeli F, Borgioni C, Gattobigio R, de Simone G, Devereux RB, Porcellati C. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16:895–9.CrossRefGoogle Scholar
  5. 5.
    Chatterjee NA, Chae CU, Kim E, Moorthy MV, Conen D, Sandhu RK, Cook NR, Lee IM, Albert CM. Modifiable risk factors for incident heart failure in atrial fibrillation. JACC Heart Fail. 2017;5:552–60.CrossRefGoogle Scholar
  6. 6.
    Seccia TM, Caroccia B, Muiesan ML, Rossi GP. Atrial fibrillation and arterial hypertension: a common duet with dangerous consequences where the renin angiotensin-aldosterone system plays an important role. Int J Cardiol. 2016;206:71–6.CrossRefGoogle Scholar
  7. 7.
    Tsioufis C, Kokkinos P, Macmanus C, Thomopoulos C, Faselis C, Doumas M, Stefanadis C, Papademetriou V. Left ventricular hypertrophy as a determinant of renal outcome in patients with high cardiovascular risk. J Hypertens. 2010;28:2299–308.CrossRefGoogle Scholar
  8. 8.
    Almahmoud MF, O’Neal WT, Qureshi W, Soliman EZ. Electrocardiographic versus echocardiographic left ventricular hypertrophy in prediction of congestive heart failure in the elderly. Clin Cardiol. 2015;38:365–70.CrossRefGoogle Scholar
  9. 9.
    Muiesan ML, Salvetti M, Di Castelnuovo A, et al. Obesity and ECG left ventricular hypertrophy. J Hypertens. 2017;35:162–9.CrossRefGoogle Scholar
  10. 10.
    Maanja M, Wieslander B, Schlegel TT, Bachorova L, Abu Daya H, Fridman Y, Wong TC, Schelbert EB, Ugander M. Diffuse myocardial fibrosis reduces electrocardiographic voltage measures of left ventricular hypertrophy independent of left ventricular mass. J Am Heart Assoc. 2017;6:1–11.CrossRefGoogle Scholar
  11. 11.
    Okin PM, Hille DA, Kjeldsen SE, Devereux RB. Combining ECG criteria for left ventricular hypertrophy improves risk prediction in patients with hypertension. J Am Heart Assoc. 2017;6:e007564.CrossRefGoogle Scholar
  12. 12.
    Okin PM, Devereux RB, Harris KE, Jern S, Kjeldsen SE, Julius S, Edelman JM, Dahlöf B. Regression of electrocardiographic left ventricular hypertrophy is associated with less hospitalization for heart failure in hypertensive patients. Ann Intern Med. 2007;147:311–9.CrossRefGoogle Scholar
  13. 13.
    Prineas RJ. Independent risk for cardiovascular disease predicted by modified continuous score electrocardiographic criteria for 6-year incidence and regression of left ventricular hypertrophy among clinically disease free men: 16-year follow-up for the multiple risk. J Elecrtrocardiol. 2001;34:91–101.CrossRefGoogle Scholar
  14. 14.
    Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90:1786–93.CrossRefGoogle Scholar
  15. 15.
    Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, Bosch J, Sussex B, Probstfield J, Yusuf S. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.CrossRefGoogle Scholar
  16. 16.
    Okin PM. Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: the losartan intervention for endpoint reduction in hypertension (LIFE) study. Circulation. 2003;108:684–90.CrossRefGoogle Scholar
  17. 17.
    Okin PM. Serial evaluation of electrocardiographic left ventricular hypertrophy for prediction of risk in hypertensive patients. J Electrocardiol. 2009;42:584–8.CrossRefGoogle Scholar
  18. 18.
    Okin PM, Wachtell K, Devereux RB, et al. Regression of electrocardiographic left ventricular hypertrophy and decreased incidence of new-onset atrial fibrillation in patients with hypertension. JAMA. 2006;296:1242–8.CrossRefGoogle Scholar
  19. 19.
    Wachtell K, Okin PM, Olsen MH, Dahlöf B, Devereux RB, Ibsen H, Kjeldsen SE, Lindholm LH, Nieminen MS, Thygesen K. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE study. Circulation. 2007;116:700–5.CrossRefGoogle Scholar
  20. 20.
    Okin PM, Devereux RB, Liu JE, Oikarinen L, Jern S, Kjeldsen SE, Julius S, Wachtell K, Nieminen MS, Dahlöf B. Regression of electrocardiographic left venticular hypertrophy predicts regression of echocardiographic left ventricular mass: the LIFE study. J Hum Hypertens. 2004;18:403–9.CrossRefGoogle Scholar
  21. 21.
    Verdecchia P, Staessen JA, Angeli F, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet. 2009;374:525–33.CrossRefGoogle Scholar
  22. 22.
    Soliman EZ, Byington RP, Bigger JT, Evans G, Okin PM, Goff DC, Chen H. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with diabetes mellitus: action to control cardiovascular risk in diabetes blood pressure trial. Hypertension. 2015;66:1123–9.CrossRefGoogle Scholar
  23. 23.
    Soliman EZ, Ambrosius WT, Cushman WC, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension. Circulation. 2017;136:440–50.CrossRefGoogle Scholar
  24. 24.
    Okin PM, Hille DA, Kjeldsen SE, Dahlöf B, Devereux RB. Persistence of left ventricular hypertrophy is associated with increased cardiovascular morbidity and mortality in hypertensive patients with lower achieved systolic pressure during antihypertensive treatment. Blood Press. 2014;23:71–80.CrossRefGoogle Scholar
  25. 25.
    Ernst ME, Davis BR, Soliman EZ, Prineas RJ, Okin PM, Ghosh A, Cushman WC, Einhorn PT, Oparil S, Grimm RH. Electrocardiographic measures of left ventricular hypertrophy in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. J Am Soc Hypertens. 2016;10:930–938.e9.CrossRefGoogle Scholar
  26. 26.
    Mancia G, Zanchetti A, Agebiti-Rosei E, Benemio G, De Cesaris R, Fogari R, Pessino A, Porcellati C, Salvetti A, Trimarco B. Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. Circulation. 1997;95:1464–70.CrossRefGoogle Scholar
  27. 27.
    Parati G, Omboni S, Rizzoni D, Agabiti-Rosei E, Mancia G. The smoothness index: a new reproducible and clinically relevant measure of the homogeneity of the blood pressure reduction with treatment for hypertension. J Hypertens. 1998;16:1685–91.CrossRefGoogle Scholar
  28. 28.
    Kario K, Hoshide S, Shimizu M, Yano Y, Eguchi K, Ishikawa J, Ishikawa S, Shimada K. Effect of dosing time of angiotensin II receptor blockade titrated by self-measured blood pressure recordings on cardiorenal protection in hypertensives: the Japan Morning Surge-Target Organ Protection (J-TOP) study. J Hypertens. 2010;28:1574–83.CrossRefGoogle Scholar
  29. 29.
    Weber T, Wassertheurer S, Schmidt-Trucksäss A, Rodilla E, et al. Relationship between 24-hour ambulatory central systolic blood pressure and left ventricular mass: a prospective multicenter study. Hypertension. 2017;70:1157–64.CrossRefGoogle Scholar
  30. 30.
    De Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, Roman MJ. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2:1–8.CrossRefGoogle Scholar
  31. 31.
    Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RHJ, Neaton JD, Stamler J. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 1995;91:698–706.CrossRefGoogle Scholar
  32. 32.
    Dahlöf B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertens. 1992;5:95–110.CrossRefGoogle Scholar
  33. 33.
    Cruickshank J, Lewis J, Moore V, Dodd C. Reversibility of left ventricular hypertrophy by differing types of antihypertensive therapy. J Hum Hypertens. 1992;6:85–90.PubMedGoogle Scholar
  34. 34.
    Fagard RH. Reversibility of left ventricular hypertrophy by antihypertensive drugs. Neth J Med. 1995;47:173–9.CrossRefGoogle Scholar
  35. 35.
    Jennings G, Wong J. Reversibility of left ventricular hypertrophy and malfunction by antihypertensive treatment, handbook o. Amsterdam: Elsevier Science BV; 1997.Google Scholar
  36. 36.
    Schmieder RE, Schlaich MP, Klingbeil AU, Martus P. Update on reversal of left ventricular hypertrophy in essential hypertension (a meta-analysis of all randomized double-blind studies until December 1996). Nephrol Dial Transplant. 1998;13:564–9.CrossRefGoogle Scholar
  37. 37.
    Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54:1084–91.CrossRefGoogle Scholar
  38. 38.
    Pucci G, Ranalli MG, Battista F, Schillaci G. Effects of $β$-blockers with and without vasodilating properties on central blood pressure: systematic review and meta-analysis of randomized trials in hypertension. Hypertension. 2016;67:316–24.CrossRefGoogle Scholar
  39. 39.
    Cuspidi C, Esposito A, Negri F, Sala C, Masaidi M, Giudici V, Zanchetti A, Mancia G. Studies on left ventricular hypertrophy regression in arterial hypertension: a clear message for the clinician? Am J Hypertens. 2008;21:458–63.CrossRefGoogle Scholar
  40. 40.
    Devereux RB, Dahlöf B, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, Harris KE, Edelman JM, Wachtell K. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation. 2004;110:1456–62.CrossRefGoogle Scholar
  41. 41.
    Agabiti-Rosei E, Ambrosioni E, Palù CD, et al. Ace inhibitor ramipril is more effective than the β-blocker atenolol in reducing left ventricular mass in hypertension. Results of the RACE (Ramipril Cardioprotective Evaluation) study. J Hypertens. 1995;13:1325–34.CrossRefGoogle Scholar
  42. 42.
    Gerdts E, Okin PM, De Simone G, Cramariuc D, Wachtell K, Boman K, Devereux RB. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension. 2008;51:1109–14.CrossRefGoogle Scholar
  43. 43.
    De Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, Roman MJ. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2(3):e000144.  https://doi.org/10.1161/JAHA.113.000144.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mancusi C, Gerdts E, De Simone G, Abdelhai YM, Lønnebakken MT, Boman K, Wachtell K, Dahlöf B, Devereux RB. Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press. 2014;23:206–12.CrossRefGoogle Scholar
  45. 45.
    Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, Poisa P, Rizzoni D, Castellano M, Agabiti-Rosei E. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43:731–8.CrossRefGoogle Scholar
  46. 46.
    Muiesan M, Salvetti M, Paini A, Beschi F, Agabiti Rosei C, Aggiusti C, Stassaldi D, Bertacchini F, Castellano M, Agabiti Rosei E. Changes on left ventricular geometry during long term antihypertensive treatment. A metanalysis of comparative studies in hypertensive patients. J Hypertens. 2010;28:e244.CrossRefGoogle Scholar
  47. 47.
    Chang SA, Kim YJ, Lee HW, Kim DH, Kim HK, Chang HJ, Sohn DW, Oh BH, Park YB. Effect of rosuvastatin on cardiac remodeling, function, and progression to heart failure in hypertensive heart with established left ventricular hypertrophy. Hypertension. 2009;54:591–7.CrossRefGoogle Scholar
  48. 48.
    Szwejkowski BR, Gandy SJ, Rekhraj S, Houston JG, Lang CC, Morris AD, George J, Struthers AD. Allopurinol reduces left ventricular mass in patients with type 2 diabetes and left ventricular hypertrophy. J Am Coll Cardiol. 2013;62:2284–93.CrossRefGoogle Scholar
  49. 49.
    Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC, Struthers AD. Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 2011;22:1382–9.CrossRefGoogle Scholar
  50. 50.
    Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Rosei EA. Resistant hypertension and target organ damage. Hypertens Res. 2013;36:485–91.CrossRefGoogle Scholar
  51. 51.
    Verloop WL, Vink EE, Spiering W, Blankestijn PJ, Doevendans PA, Bots ML, Vonken EJ, Voskuil M, Leiner T. Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol. 2015;22:558–67.CrossRefGoogle Scholar
  52. 52.
    Lu D, Wang K, Liu Q, Wang S, Zhang Q, Shan Q. Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol. 2016;105:648–56.CrossRefGoogle Scholar
  53. 53.
    Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388–93.CrossRefGoogle Scholar
  54. 54.
    López B, Querejeta R, Varo N, González A, Larman M, Martínez Ubago JL, Díez J. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation. 2001;104:286–91.CrossRefGoogle Scholar
  55. 55.
    Li C, Sun XN, Zeng MR, et al. Mineralocorticoid receptor deficiency in T cells attenuates pressure overload-induced cardiac hypertrophy and dysfunction through modulating T-cell activation. Hypertension. 2017;70:137–47.CrossRefGoogle Scholar
  56. 56.
    Solomon SD, Janardhanan R, Verma A, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomised trial. Lancet. 2007;369:2079–87.CrossRefGoogle Scholar
  57. 57.
    Bang CN, Devereux RB, Okin PM. Regression of electrocardiographic left ventricular hypertrophy or strain is associated with lower incidence of cardiovascular morbidity and mortality in hypertensive patients independent of blood pressure reduction—a LIFE review. J Electrocardiol. 2014;47:630–5.CrossRefGoogle Scholar
  58. 58.
    Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.CrossRefGoogle Scholar
  59. 59.
    Salvetti M, Muiesan ML, Paini A, Monteduro C, Agabiti-Rosei C, Aggiusti C, Bertacchini F, Stassaldi D, Castellano M, Agabiti-Rosei E. Left ventricular hypertrophy and renal dysfunction during antihypertensive treatment adversely affect cardiovascular prognosis in hypertensive patients. J Hypertens. 2012;30:411–20.CrossRefGoogle Scholar
  60. 60.
    Wachtell K, Gerdts E, Palmieri V, et al. In-treatment midwall and endocardial fractional shortening predict cardiovascular outcome in hypertensive patients with preserved baseline systolic ventricular function: the losartan intervention for endpoint reduction study. J Hypertens. 2010;28:1541–6.CrossRefGoogle Scholar
  61. 61.
    Kurt M, Wang J, Torre-Amione G, Nagueh SF. Left atrial function in diastolic heart failure. Circ Cardiovasc Imaging. 2009;2:10–5.CrossRefGoogle Scholar
  62. 62.
    Angeli F, Reboldi G, Poltronieri C, Stefanetti E, Bartolini C, Verdecchia P. The prognostic legacy of left ventricular hypertrophy: cumulative evidence after the MAVI study. J Hypertens. 2015;33:2322–30.CrossRefGoogle Scholar
  63. 63.
    Badve SV, Palmer SC, Strippoli GFM, et al. The validity of left ventricular mass as a surrogate end point for all-cause and cardiovascular mortality outcomes in people with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2016;68:554–63.CrossRefGoogle Scholar
  64. 64.
    Eshoo S, Semsarian C, Ross DL, Thomas L. Left atrial phasic volumes are modulated by the type rather than the extent of left ventricular hypertrophy. J Am Soc Echocardiogr. 2010;23:538–44.CrossRefGoogle Scholar
  65. 65.
    Tsioufis C, Taxiarchou E, Syrseloudis D, Chatzis D, Tsiachris D, Chatzistamatiou E, Skiadas I, Metallinos G, Tsiamis E, Stefanadis C. Left ventricular mass but not geometry determines left atrial size in the early stages of hypertension. J Hum Hypertens. 2009;23:674–9.CrossRefGoogle Scholar
  66. 66.
    Haywood LJ, Ford CE, Crow RS, Davis BR, Massie BM, Einhorn PT, Williard A. Atrial fibrillation at baseline and during follow-up in ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial). J Am Coll Cardiol. 2009;54:2023–31.CrossRefGoogle Scholar
  67. 67.
    Vaziri SM, Larson MG, Benjamin EJ, Levy D. Echocardiographic predictors of nonrheumatic atrial fibrillation: the Framingham heart study. Circulation. 1994;89:724–30.CrossRefGoogle Scholar
  68. 68.
    Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D. Left atrial size and the risk of stroke and death : the Framingham heart study. Circulation. 1995;92:835–41.CrossRefGoogle Scholar
  69. 69.
    Di Tullio MR, Sacco RL, Sciacca RR, Homma S. Left atrial size and the risk of ischemic stroke in an ethnically mixed population. Stroke. 1999;30:2019–24.CrossRefGoogle Scholar
  70. 70.
    Verdecchia P, Reboldi GP, Gattobigio R, Bentivoglio M, Borgioni C, Angeli F, Carluccio E, Grazia Sardone M, Porcellati C. Atrial fibrillation in hypertension: predictors and outcome. Hypertension. 2003;41:218–23.CrossRefGoogle Scholar
  71. 71.
    Gottdiener JS, Reda DJ, Massie BM, Materson BJ, Williams DW, Anderson RJ. Effect of single-drug therapy on reduction of left ventricular mass in mild to moderate hypertension: comparison of six antihypertensive agents. Circulation. 1997;95:2007–14.CrossRefGoogle Scholar
  72. 72.
    Gerdts E, Wachtell K, Omvik P, Otterstad JE, Oikarinen L, Boman K, Dahlöf B, Devereux RB. Left atrial size and risk of major cardiovascular events during antihypertensive treatment: losartan intervention for endpoint reduction in hypertension trial. Hypertension. 2007;49:311–6.CrossRefGoogle Scholar
  73. 73.
    Wachtell K, Gerdts E, Aurigemma GP, et al. In-treatment reduced left atrial diameter during antihypertensive treatment is associated with reduced new-onset atrial fibrillation in hypertensive patients with left ventricular hypertrophy: the LIFE study. Blood Press. 2010;19:169–75.CrossRefGoogle Scholar
  74. 74.
    Schirmer SH, Sayed MMYA, Reil JC, Lavall D, Ukena C, Linz D, Mahfoud F, Böhm M. Atrial remodeling following catheter-based renal denervation occurs in a blood pressure- and heart rate-independent manner. JACC Cardiovasc Interv. 2015;8:972–80.CrossRefGoogle Scholar
  75. 75.
    Gaddam K, Corros C, Pimenta E, et al. Rapid reversal of left ventricular hypertrophy and intracardiac volume overload in patients with resistant hypertension and hyperaldosteronism: a prospective clinical study. Hypertension. 2010;55:1137–42.CrossRefGoogle Scholar
  76. 76.
    Schiattarella GG, Hill JA. Is inhibition of hypertrophy a good therapeutic strategy in ventricular pressure overload. Circulation. 2015;131:1435–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Lorenza Muiesan
    • 1
    Email author
  • Anna Paini
    • 1
  • Fabio Bertacchini
    • 1
  • Claudia Agabiti Rosei
    • 1
  • Massimo Salvetti
    • 1
  1. 1.Internal Medicine, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly

Personalised recommendations