Advertisement

Monitoring and Management of Pollution Level

  • Abhijit Mitra
Chapter

Abstract

The health of any aquatic ecosystem or the survival of biota in the system is a function of its physico-chemical variables. The domain of physico-chemical variables includes parameters like water temperature, dissolved oxygen (DO), pH, salinity and nutrients (like nitrate, phosphate and silicate). Also the measurements of toxicants like insecticides, herbicides and metals are included within the list of physico-chemical variables. Physico-chemical indicators provide information on what is impacting on the system. For example, is it an organic waste that affects DO or is it some specific type of toxicants? Sometimes excessive nutrient load in the aquatic ecosystem (that originates from the domestic and municipal sewage) triggers the growth of phytoplankton and causes eutrophication. Thus biological organisms are also being affected by physico-chemical variables.

Suggested References

  1. Agarwal, S., Zaman, S., Biswas, S., Pal, N., Pramanick, P., & Mitra, A. (2016). Spatial variation of mangrove seedling carbon with respect to salinity: A case study with Bruguiera gymnorrhiza seedling. International Journal of Advanced Research in Biological Science, 3(8), 7–12.Google Scholar
  2. Banerjee, K., Sengupta, K., Raha, A. K., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass & Bioenergy, (Elsevier), 56, 382–391.CrossRefGoogle Scholar
  3. Batiuk, R. A., Orth, R. J., Moore, K. A., Dennison, W. C., Stevenson, J. C., Staver, L. W., Carter, V., Rybicki, N. B., Hickman, R. E., Koller, S., Bieber, S., & Heasly, P. (1992). Chesapeake Bay submerged aquatic vegetation habitat requirements and restoration targets: A technical synthesis. Annapolis: EPA.Google Scholar
  4. Bellinger, E., & Benhem, B. (1978). The levels of metals in dockyard sediments with particular reference to the contributions from ship bottom paints. Environmental Pollution, 15(1), 71–81.CrossRefGoogle Scholar
  5. Bergback, B., Anderberg, S., & Lohm, U. (1992). Lead load: Historic pattern of lead use in Sweden. Ambio, 21(2), 159–165.Google Scholar
  6. Castro, H., Aguilera, P. A., Martinez, J. L., & Carrique, E. L. (1999). Differentiation of clams from fishing areas an approximation to coastal quality assessment. Environmental Monitoring Assessment, 54, 229–237.CrossRefGoogle Scholar
  7. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans (Vol. 1). Gland: International Union for Conservation of Nature and Natural Resources (IUCN).Google Scholar
  8. Date, A. R., & Gray, A. L. (1988). Applications of inductively coupled plasma source mass spectrometry. Glassgow: Blackie.Google Scholar
  9. De la Guardia, M. (ed.). (1990). Empleo de losHornos de Microondas en Quimica, University of Valencia, Spain. Enoyer, E.R., (1992). Semi–quantitative analysis of environmental materials by laser-sampling inductively coupled plasma mass spectrometry. Journal of Analytical and Atomic Spectrometry, 7, 1187.Google Scholar
  10. Environment Protection Act, Government of India Amendment. (1992a). Inserted by Rule 2 of the Environment(Protection)(Third Amendment)Rules,1992 notified vide G.S.R 562(E) dated 22.5.1992.Google Scholar
  11. Environment Protection Act, Government of India Amendment. (1992b). Substituted by Rule 2 of the Environment(Protection)(Fourth Amendment)Rules,1992 notified vide G.S.R 636(E) dated 25.6.1992.Google Scholar
  12. European Union Commission Regulation. (2001). No. 466/2001 of 8 March, 2001.Google Scholar
  13. FDA. (2001). Fish and fisheries products hazards and controls guidance (3r ed.). Centre for Food Safety and Applied Nutrition, US Food and Drug Administration.Google Scholar
  14. Food Standards Australia. (2002). 53, Standard 1.4.1 and 1.4.2.Google Scholar
  15. Goldberg, E. D. (1975). The muscle watch- a first step in global marine monitoring. Marine Pollution Bulletin, 6, 111.CrossRefGoogle Scholar
  16. Haldia Development Authority – An Autonomous Body under Government of West Bengal, India (website: www.nltr.org).
  17. Hasnain, S. I. (1999). Himalayan glaciers: Hydrology and hydrochemistry. New Delhi: Allied publishers. ISBN: 8170239222, 9788170239222.Google Scholar
  18. Hasnain, S. I. (2000). Status of the glacier research in the HKH region. Kathmandu: International Centre for Integrated Mountain Development (ICIMOD).Google Scholar
  19. Hasnain, S. I. (2002). Himalayan glaciers meltdown: Impact on South Asian Rivers. International Association of Hydrological Sciences (IAHS), 274, 1–7.Google Scholar
  20. Johnson, R. K., Widerholm, T., & Rosenberg, D. M. (1993). Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 40–158). New York: Chapman and Hall.Google Scholar
  21. Koller, K., Brown, T., Spurgeon, A., & Levy, L. (2004). Recent development in low level exposure and intellectual impairment in children. Environmental Health Perspective, 112(9), 987–994.CrossRefGoogle Scholar
  22. LaFond, E. C. (1954). The upwelling and sinking off the east coast of India. Andhra University, Memoirs in Oceanography, 1, 117–121.Google Scholar
  23. Manikoth, S., & Salin, K. Y. M. (1974). Distribution characteristics of nutrients in the estuarine complex of Cochin. Indian Journal of Marine Science, 4, 125–130.Google Scholar
  24. Matusiewicz, H., & Sturgeon, R. E. (1989). Present status of microwave sample dissolution and decomposition for elemental analysis. Programme on Analytical Spectrometry, 12, 21.Google Scholar
  25. Mitra, A. (1998). Status of coastal pollution in West Bengal with special reference to heavy metals. Journal of Indian Ocean Studies, 5(2), 135–138.Google Scholar
  26. Mitra, A. (2000). Chapter 62: The northeast coast of the Bay of Bengal and deltaic Sundarbans. In C. Sheppard (Ed.), Seas at the Millennium – An environmental evaluation (pp. 143–157). UK: Elsevier Science.Google Scholar
  27. Mitra, A. (2013, August 31). Sensitivity of mangrove ecosystem to changing climate, (2013th ed.). New Delhi/Heidelberg/New York/Dordrecht/London: Springer; ISBN-10: 8132215087; ISBN-13: 978-8132215080., copyright Springer, India 2013; ISBN 978-81-322-1509-7 (eBook).Google Scholar
  28. Mitra, A., & Choudhury, A. (1992). Trace metals in macrobenthic molluscs of the Hooghly estuary. India. Marine Pollution Bulletin, UK, 26(9), 521–522.CrossRefGoogle Scholar
  29. Mitra, A., & Choudhury, A. (1993). Seasonal variations in metal content in the gastropod Nerita articulata (Gould). Indian Journal of Environment and Health, NEERI, 35(1), 31–35.Google Scholar
  30. Mitra, A., & Zaman, S. (2014). Carbon sequestration by Coastal Floral Community. India: The Energy and Resources Institute (TERI) TERI Press. Copyright The Energy and Resources Institute. ISBN 978-81-7993-551-4.Google Scholar
  31. Mitra, A., & Zaman, S. (2015). Blue carbon reservoir of the blue planet. Berlin: Springer. ISBN 978-81-322-2106-7.Google Scholar
  32. Mitra, A., & Zaman, S. (2016). Basics of marine and estuarine ecology. Springer, ISBN 978-81-322-2705-2: 2016.Google Scholar
  33. Mitra, A., Gangopadhyay, A., Dube, A., Andre, C. K. S., & Banerjee, K. (2009). Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Current Science, 97(10), 1445–1452.Google Scholar
  34. Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, (Elsevier), 261(7), 1325–1335.  https://doi.org/10.1016/j.foreco.2011.01.012.CrossRefGoogle Scholar
  35. Nadkarni, R. A. (1984). Applications of microwave oven sample dissolution in analysis. Analytical Chemistry, 56, 22–33.CrossRefGoogle Scholar
  36. Pal, N., Gahul, A., Zaman, S., Biswa, S. P., & Mitra, A. (2016). Spatial variation of stored carbon in Avicennia alba seedlings of Indian Sundarbans. International Journal of Trend in Research and Development, 3(4), 100–103.Google Scholar
  37. Phillips, D. J. H., & Rainbow, P. S. (1993). Biomonitoring of trace aquatic contaminants. New York: Elsevier Applied Science.Google Scholar
  38. Raha, A. K., Bhattacharyya, S. B., Zaman, S., Banerjee, K., Sengupta, K., Sinha, S., Sett, S., Chakraborty, S., Datta, S., Dasgupta, S., Roy Chowdhury, M., Ghosh, R., Mondal, K., Pramanick, P., & Mitra, A. (2013). Carbon census in dominant mangroves of Indian Sundarbans. The Journal of Energy and Environmental Science, 127, 345–354.Google Scholar
  39. Reddy, M. S., Mehta, B., Dave, S., Joshi, M., Karthikeyan, L., Sarma, V. K. S., Basha, S., & Bhatt, P. (2007). Bioaccumulation of heavy metals in some commercial fishes and crabs of the Gulf of Cambay, India. Current Science, 92, 1489–1491.Google Scholar
  40. Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman and Hall. 488pp.Google Scholar
  41. Saha, S. B., Ghosh, B. B., & Gopalakrishnan, V. (1975). Plankton of the Hooghly estuary with special reference to salinity and temperature. Journal of the Marine Biological Association of India, 17(1), 107–120.Google Scholar
  42. Sankaranarayanan, V. N., & Qasim, S. Z. (1969). Nutrients of the Cochin backwater in relation to environmental characteristics. Marine Biology, 2, 236–247.CrossRefGoogle Scholar
  43. Singapore Food Regulations. (1990). Cap. 283, 1st ed., Singapore.Google Scholar
  44. Sinha, M., Mukhopadhyay, M. K., Mitra, P. M., Bagchi, M. M., & Karmakar, H. C. (1996). Impact of Farakka Barrage on the hydrology and fishery of Hooghly Estuary. Estuaries, 19(3), 710–722.CrossRefGoogle Scholar
  45. Trivedi, S., Zaman, S., Ray Chaudhuri, T., Pramanick, P., Fazli, P., Amin, G., & Mitra, A. (2016). Inter-annual variation of salinity in Indian Sundarbans. Indian Journal of Geo-Marine Science, 45(3), 410–415.Google Scholar
  46. UNEP. (1982). Pollution and the marine environment in the Indian Ocean. Geneva: UNEP Regional Seas Programme Activity Centre.Google Scholar
  47. Young, D., Alexander, G., & Mcdermott–Ehrilic, D. (1979). Vessel-elated contamination of Southern California by copper and other metals. Marine Pollution Bulletin, 10(2), 50–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations