Advertisement

Climate Change and Pollution

  • Abhijit Mitra
Chapter

Abstract

The climate of the planet Earth is regulated by the balance between the amount of energy the Earth receives from the Sun, in the form of light and ultraviolet radiation, and the amount of energy the Earth releases back to space, in the form of infrared heat energy. The basic causes of climate change involve any process that can alter this global energy balance. Scientists call this “climate forcing”. Climate forcing “forces” or induces the climate to change.

Supplementary material

Open image in new windowFig. 6A.1.1 Open image in new windowFig. 6A.1.2 Open image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new windowOpen image in new window Open image in new windowFig. 6A.1.3 Open image in new windowFig. 6A.1.4 Open image in new windowFig. 6A.1.5 Open image in new windowFig. 6A.1.6 Open image in new windowFig. 6A.1.7 Open image in new windowFig. 6A.1.8 Open image in new windowFig. 6A.1.9 Open image in new windowFig. 6A.1.10 Open image in new windowFig. 6A.1.11 Open image in new windowFig. 6A.1.12 Open image in new windowFig. 6A.1.13 Open image in new windowFig. 6A.1.14 Open image in new windowFig. 6A.1.15 Open image in new windowFig. 6A.1.16 Open image in new windowFig. 6A.1.17 Open image in new windowFig. 6A.1.18 Open image in new windowFig. 6A.1.19 Open image in new windowFig. 6A.1.20 Open image in new windowFig. 6A.1.21 Open image in new windowFig. 6A.1.22 Open image in new windowFig. 6A.1.23 Open image in new windowFig. 6A.1.24 Open image in new windowFig. 6A.1.25 Open image in new windowFig. 6A.1.26 Open image in new windowFig. 6A.1.27 Open image in new windowFig. 6A.1.28 Open image in new windowFig. 6A.1.29 Open image in new windowFig. 6A.1.30 Open image in new windowFig. 6A.1.31 Open image in new windowFig. 6A.1.32 Open image in new windowFig. 6A.1.33 Open image in new windowFig. 6A.1.34 Open image in new windowFig. 6A.1.35 Open image in new windowFig. 6A.1.36 Open image in new windowFig. 6A.1.37 Open image in new windowFig. 6A.1.38 Open image in new windowFig. 6A.1.39 Open image in new windowFig. 6A.1.40 Open image in new windowFig. 6A.1.41 Open image in new windowFig. 6A.1.42 Open image in new windowFig. 6A.1.43 Open image in new windowFig. 6A.1.44 Open image in new windowFig. 6A.1.45 Open image in new windowFig. 6A.1.46 Open image in new windowFig. 6A.1.47 Open image in new windowFig. 6A.1.48 Open image in new windowFig. 6A.1.49 Open image in new windowFig. 6A.1.50 Open image in new windowFig. 6A.1.51 Open image in new windowFig. 6A.1.52 Open image in new windowFig. 6A.1.53

Suggested References

  1. Chao, B. F. (1994). Man-made lakes and sea-level rise. Nature, 370, 258.CrossRefGoogle Scholar
  2. Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D. and Woodworth, P.L. (2001). Changes in Sea Level, In Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell and C.I. Johnson). Cambridge University Press, Cambridge.Google Scholar
  3. Gornitz, V. (2001). Impoundment, groundwater mining, and other hydrologic transformations: Impacts on global sea level rise. In B. C. Douglas, M. S. Kearney, & S. P. Leatherman (Eds.), Sea level rise, history and consequences (pp. 97–119). San Diego: Academic.CrossRefGoogle Scholar
  4. Hazra, S., Ghosh, T., DasGupta, R., & Sen, G. (2002). Sea level and associated changes in the Sundarbans. Science and Culture, 68, 309–312.Google Scholar
  5. IPCC. (2001). The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge: Cambridge University Press.Google Scholar
  6. Mitra, A., Banerjee, K., Sengupta, K., & Gangopadhyay, A. (2009). Pulse of climate change in Indian Sundarbans: A myth or reality. National Academy of Science Letter, 32(1 & 2), 1–7.Google Scholar
  7. Mohanty, M. (1990). In G. Victor Rajamanickam (Ed.), Sea level rise: Background, global concern and implications for Orissa coast, India in sea level variation and its impact on coastal environment. Thanjavur: Tamil University Press.Google Scholar
  8. Pidwirny, M. (2006). The drainage basin concept. In Fundamentals of physical geography, 2nd ed.Google Scholar
  9. Sahagian, D. L. (2000). Global physical effects of anthropogenic hydrological alterations: Sea level and water redistribution. Global and Planetary Change, 25, 39–48.CrossRefGoogle Scholar
  10. Sahagian, D. L., Schwartz, F. W., & Jacobs, D. K. (1994). Direct anthropogenic contributions to sea level rise in the twentieth century. Nature, 367, 54–57.CrossRefGoogle Scholar
  11. Subramanian, V. (2000). Water: Quantity-quality perspective in South Asia (p. 49). Surrey: Kingston International Publishers.Google Scholar
  12. UNFAO Report. (2006). Livestock – A major threat to environment: Remedies urgently needed. Reported by Christopher Matthews, Media Relations, FAO, Rome.Google Scholar

References of Annexure 6A.1

  1. Abdollahi, K. K., Ning, Z. H., & Appeaning, A. (2000). Global climate change and the urban forest (pp. 31–44). Baton Rouge: GCRCC and Franklin Press.Google Scholar
  2. Beckett, K. P., Freer-Smith, P., & Taylor, G. (2000). Effective tree species for local air-quality management. Journal of Arboriculture, 26, 12–19.Google Scholar
  3. Burley, J., Evans, J., & Youngquist, J. A. (2004). Encyclopedia of forest sciences. Elsevier. 1st Edition, eBook ISBN:9780080548012.Google Scholar
  4. Centritto, M., Lee, H. S. J., & Jarvis, P. G. (1999a). Interactive effects of elevated [CO2] and drought on cherry (Prunes valium) seedlings. Growth, whole-plant water use efficiency and water loss, whole-plant water use efficiency and water loss. New Phytology, 141, 129–140.CrossRefGoogle Scholar
  5. Centritto, M., Magnani, F., Lee, H. S. J., & Jarvis, P. G. (1999b). Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings, photosynthetic capacity and water relations. New Phytology, 141, 141–153.CrossRefGoogle Scholar
  6. Chaparro, L., & Terradas, J. (2009). Ecological Services of Urban Forest in Barcelona. Àrea de Medi Ambient Institut Municipal de Parcs i Jardins, Ajuntament de Barcelona.Google Scholar
  7. Chaudhary, P. (2006). Valuing recreational benefits of urban forestry – a case study of Chandigarh city (Doctorate thesis). FRI Deemed University, Dehradun, India.Google Scholar
  8. Chaudhary, P., & Tewari, V. P. (2010a). Managing urban parks and gardens in developing countries: A case from an Indian city. International Journal of Leisure and Tourism Marketing, 1(3), 248–256.CrossRefGoogle Scholar
  9. Chaudhary, P., & Tewari, V. P. (2010b). Managing urban parks and gardens in developing countries: A case from Chandigarh India. International Journal of Leisure Tourism Market, 1, 248–256.CrossRefGoogle Scholar
  10. Chidumaya, E. N. (1990). Above ground woody biomass structure and productivity in a Zambezian.Google Scholar
  11. Clough, B. F., & Scott, K. (1989). Allometric relationship for estimating above ground biomass in six mangrove species. Forest Ecology and Management, 27, 117–127.CrossRefGoogle Scholar
  12. Davies, Z. G., Edmonson, J. L., Heinemeyer, A., Leake, J. R., & Gaston, K. J. (2011). Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city wide scale. Journal of Applied Ecology, 48, 1125–1134.CrossRefGoogle Scholar
  13. DeFries, R., & Pandey, D. (2010). Urbanization, the energy ladder and forest transitions in India’s emerging economy. Land Use Policy, 27(2), 130–138.CrossRefGoogle Scholar
  14. Dobbs, C., Escobedo, F., & Zipperer, W. (2011). A framework for developing urban forest ecosystem services and goods indicators. Landscape and Urban Planning, 99, 196–206.CrossRefGoogle Scholar
  15. Dubey, S. K., & Pandey, D. N. (1993). The effect of afforestation on the abundance and diversity of birds. In A. P. Dwivedi & G. N. Gupta (Eds.), Afforestation of arid lands (pp. 313–320). Jodhpur: Scientific Publishers.Google Scholar
  16. Dwivedi, P., Rathore, C. S., & Dubey, Y. (2009). Ecological benefits of urban forestry: The case of Kerwa Forest Area (KFA), Bhopal, India. Applied Geography, 29(2), 194–2009.CrossRefGoogle Scholar
  17. EPA Progress Report. (2010). Science and Research at the U.S. Environmental Protection Agency. Washington, DC 20460.Google Scholar
  18. Forbes, S. M., Rose, H. D. (2003). Terrestrial sequestration: An adaptation and mitigation strategy. Second National Sequestration Conference, May 5–8, 2003, Alexandria, Virginia.Google Scholar
  19. Francesco, F. (2011). Sustainable management techniques for trees in the urban areas. Journal of Biodiversity and Ecological Sciences JBES, 1(1), 1–20.Google Scholar
  20. FSI. (2009). State of Forest Report 2009. Forest Survey of India, Ministry of Environment & Forests, Dehradun.Google Scholar
  21. Ghoshal and Bhattacharyya. (2000). Carbon dioxide emissions, India, 1980–2000. ISRO Geosphere Biosphere Program (IGBP), National Carbon Project (NCP), status report- soil and vegetation-atmosphere fluxes, 20 March, 2010, Indian Institute of Remote Sensing (NRSC), Indian Space Research Organisation, Dept. of Space, Govt. of India, 4, Kalidas Road, Dehradun-248 001.Google Scholar
  22. Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115–133.CrossRefGoogle Scholar
  23. Gupta, R. B., Chaudhari, P. R., & Wate, S. R. (2008). Floristic diversity in urban forest area of NEERI Campus, Nagpur, Maharashtra (India). Journal of Environmental Science and Engineering, 50(1), 55–62.Google Scholar
  24. Heath, L. S., Smith, J. E., Skog, K. E., Nowak, D. J., & Woodall, C. W. (2011, April/May). Managed forest carbon estimates for the U.S. greenhouse gas inventory, 1990–2008. Journal of Forestry, 109, 167–173.Google Scholar
  25. Husch, B., Miller, C. J., & Beers, T. W. (1982). Forest mensuration. New York: Ronald Press.Google Scholar
  26. Hutyra, L. R., Yoon, B., & Alberti, M. (2011). Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Global Change Biology, 17, 783–797.CrossRefGoogle Scholar
  27. Idso, S. B., & Kimball, B. A. (2001). CO2 enrichment of sour orange trees: 13 years and counting. Environment Experiment Botany, 46, 147–153.CrossRefGoogle Scholar
  28. Intergovernmental Panel on Climate Change (IPCC). (2006). 2006 IPCC guidelines for national greenhouse gas inventories. In S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.). Agriculture, Forestry and Other Land Use (AFOLU) (vol. 4). Last accessed January, 2010. www.ipcc-nggip.iges.or.jp/public2006gl/vol4.html
  29. International Geosphere-Biosphere Programme. (2009). Global change, Stockholm, Sweden, Issue 74: 15.Google Scholar
  30. Keutgen, N., & Chen, K. (2001). Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macro-nutrient and carbohydrate contents to elevated CO2. Journal of Plant Physiology, 158, 1307–1316.CrossRefGoogle Scholar
  31. Khera, N., Mehta, V., & Sabata, B. C. (2009). Interrelationship of birds and habitat features in urban green spaces in Delhi, India. Urban Forestry & Urban Greening, 8(3), 187–196.CrossRefGoogle Scholar
  32. Komiyama, A., Ogino, K., Aksomkoae, S., & Sabhasri, S. (1987). Root biomass of a mangrove forest in southern Thailand 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3, 97–108.CrossRefGoogle Scholar
  33. Lal, R., & Augustine, B. (2012). Carbon sequestration in urban ecosystems (p. 385). New York: Springer.CrossRefGoogle Scholar
  34. Madan, M. C. S. (1993). Composition of the ground vegetation of Visakhapatnam. Journal of Natcon, 5, 77–82.Google Scholar
  35. McKee, K. L. (1995). Inter-specific variation in growth biomass partitioning and defensive characteristics of neotropical mangrove seedlings response to light and nutrient availability. American Journal of Botany, 82, 299–307.CrossRefGoogle Scholar
  36. Mhatre, N. (2008). Secret lives: Biodiversity of the Indian Institute of Science Campus. Bangalore: Indian Institute of Science Press, 229pp.Google Scholar
  37. Mitra, S. (1993). Some aspects of ecology of walls at Visakhapatnam (Ph.D thesis). Andhra University.Google Scholar
  38. Montagnini, F., & Porras, C. (1998). Evaluating the role of plantation as carbon sinks; an example of an integrative approach from the humid tropic. Environmental Management, 22, 459–470.CrossRefGoogle Scholar
  39. Nagendra, H., & Gopal, D. (2010). Street trees in Bangalore: Density, diversity, composition and distribution. Urban Forestry & Urban Greening.  https://doi.org/10.1016/j.ufug.2009.1012.1005.
  40. Nandini, N., Kumar, M., & Tandon, S. (2009). Assessment of carbon sequestration in trees of Jnanabharathi Campus – Bangalore University. Journal of Ecology, Environment and Conservation, 15(3), 503–508.Google Scholar
  41. Nowak, D. J. (1993). Atmospheric carbon reduction by urban trees. Journal of Environmental Management, 37(3), 207–217.CrossRefGoogle Scholar
  42. Nowak, D. J. (1994). Atmospheric carbon dioxide reduction by Chicago’s urban forest, pp 83—94. In E. G. McPherson, D. J. Nowak, & R. A. Rowntree (Eds). Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project, General Technical Report NE-186. USDA Forest Service, Northeastern Forest Experiment Station, Radnor, PA.Google Scholar
  43. Nowak, D. J. (2010). Urban biodiversity and climate change. In N. Muller, P. Werner, & J. G. Kelcey (Eds.), Urban biodiversity and design (pp. 101–117). Hoboken: Wiley-Blackwell Publishing.CrossRefGoogle Scholar
  44. Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116, 381–389.CrossRefGoogle Scholar
  45. Nowak, D. J., & Walton, J. T. (2005). Projected urban growth (2000–2050) and its estimated impact on the US forest resource. Journal of Forestry, 103(8), 383–389.Google Scholar
  46. Nowak, D. J., & Greenfield, E. J. (2012). Tree and impervious cover in the United States. Landscape and Urban Planning, 107, 21–30.CrossRefGoogle Scholar
  47. Nowak, D. J., Noble, M. H., Sisinni, S. M., & Dwyer, J. F. (2001). Assessing the U.S. urban forest resource. Journal of Forestry, 99(3), 37–42.Google Scholar
  48. Nowak, D. J., Rowntree, R. A., McPherson, E. G., Sisinni, S. M., Kerkmann, E., & Stevens, J. C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning, 36, 49–57.CrossRefGoogle Scholar
  49. Ong, J. E., Gong, W. K., & Clough, B. F. (1995). Structure and productivity of a 20-year old stand of Rhizophora apiculata BL mangrove forest. Journal of Biogeography, 55, 417–424.Google Scholar
  50. Pan, Q., Wang, Z., & Quebedeaux, B. (1998). Responses of the apple plant to CO2 enrichment: Changes in photosynthesis, sorbitol, other soluble sugars, and starch. Australian Journal of Plant Physiology, 25, 293–297.CrossRefGoogle Scholar
  51. Patwardhan, A. S., Nalavade, S. K., & Utkarsh, G. (2001). Urban wildlife and protected areas in India. Parks, 11(3), 28–34.Google Scholar
  52. Putz, F. E., & Chan, H. T. (1986). Tree growth dynamics and productivity in a mature mangrove forest in Malaysia. Forest Ecology and Management, 17, 211–230.CrossRefGoogle Scholar
  53. Redondo- Brenes, A. (2007). Growth, carbon sequestration, and management of negative tree plantation in humid of Coasta Rica. New Forests, 34, 253–268.CrossRefGoogle Scholar
  54. Schaffer, B., Whiley, A. W., Searle, C., & Nissen, R. J. (1997). Leaf gas exchange, dry matter partitioning, and mineral element concentrations in mango as influenced by elevated atmospheric carbon dioxide and root restriction. Journal of American Society Horticulture Science, 122, 849–855.Google Scholar
  55. Scott, K. I., Simpson, J. R., & McPherson, E. G. (1999). Effects of tree cover on parking lot microclimate and vehicle emissions. Journal of Arboriculture, 25, 129–142.Google Scholar
  56. Sivaramakrishnan, K. C., Kundu, A., & Singh, B. N. (2005). Handbook of urbanization in India: An analysis of trends and processes. New Delhi: Oxford University Press.Google Scholar
  57. Strohbach, M., & Haase, D. (2012). The above ground carbon stock of a central European city: Patterns of carbon storage in trees in Leipzig, Germany. Landscape and Urban Planning, 104, 95–104.CrossRefGoogle Scholar
  58. Sudha, P., & Ravindranath, N. H. (2000). A study of Bangalore urban forest. Landscape and Urban Planning, 47, 47–63.CrossRefGoogle Scholar
  59. Tamai, S., Nakasuga, T., Tabuchi, R., & Ogino, K. (1986). Standing biomass of mangrove forests in Southern Thailand. Journal of Japanese Forest Society, 68, 384–388.Google Scholar
  60. Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India: Spatiotemporal analysis using remote sensing data. Computers Environment & Urban Systems, 33(3), 179–188.CrossRefGoogle Scholar
  61. Veld, K. V., & Plantinga, A. (2005). Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies. Journal of Environmental Economics and Management, 50, 59–81.CrossRefGoogle Scholar
  62. Verma, S. S. (1985). Spatio-temporal study of open spaces of part of Jaipur City-Rajasthan. Journal of the Indian Society of Remote Sensing, 13(1), 9–16.Google Scholar
  63. Wilby, R. L., & Perry, G. L. W. (2006). Climate change, biodiversity and the urban environment: A critical review based on London UK. Progress in Physical Geography, 30(1), 73–98.CrossRefGoogle Scholar
  64. Zérah, M. H. (2007). Conflict between green space preservation and housing needs: The case of the Sanjay Gandhi National Park in Mumbai. Cities, 24(2), 122–132.CrossRefGoogle Scholar
  65. Zhao, M., Kong, Z. H., Escobedo, F. J., & Gao, J. (2010). Impacts of urban forest on off-setting carbon emissions from industrial energy use in Hangzhou, China. Journal of Environmental Management, 91(4), 807–813.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations