Advertisement

Pesticide Level in the Lower Gangetic Delta

  • Abhijit Mitra
Chapter

Abstract

Persistent organic pollutants (POPs) are organic compounds that are resistant to environmental degradation through chemical, biological and photolytic processes. Due to this nature, they persist in the environment, bioaccumulate in human and animal tissue, biomagnify in food chains and have potential significant impacts on human health and the environment. Thus these groups of chemicals are not materially broken down over a reasonable period of time and are usually measured in decades or more. The POPs of most concern are those that build up in the environment or get bioaccumulated and/or biomagnified in the food chain.

Suggested References

  1. Banerjee, S., Howard, P. H., Rosenberg, A. M., Dombrowski, A. E., Sikka, H., & Tullis, D. L. (1984). Development of a general kinetic model for biodegradation and its application to chlorophenols and related compounds. Environmental Science and Technology, 18, 416–422.CrossRefGoogle Scholar
  2. Barrie, L. A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R., Tracey, B., & Bidleman, T. (1992). Arctic contaminants: Sources, occurrence and pathways. The Science of the Total Environment, 122, 1–74.CrossRefGoogle Scholar
  3. Battersby, N. S. (1990). A review: A biodegradation kinetics in the aquatic environment. Chemosphere, 21, 1243–1284.CrossRefGoogle Scholar
  4. Baughman, G. L., Paris, D. F., & Steen, W. C. (1980). Quantitative expression of biotransformation rate. In A. W. Maki, K. L. Dickson, & J. Cairns (Eds.), Biotransformation and fate of chemicals in the aquatic environment (pp. 67–86). Washington, DC: American Society for Microbiology.Google Scholar
  5. Bidleman, T. F., Jantunen, L. M., Falconer, R. L., & Barrie, L. A. (1995). Decline of hexachlorocyclohexane in arctic atmosphere and reversal of air-sea exchange. Geophysical Research Letters, 22, 219–222.CrossRefGoogle Scholar
  6. Bookhout, C. G., & Costlow, J. D. (1976). Effects of Mirex, methoxychlor and malathion on development of crabs (p. 96). Beaufort, North Carolina: Duke University.Google Scholar
  7. Calamari, D., Galassi, S., Setti, F., & Vighi, M. (1983). Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere, 12, 253–262.CrossRefGoogle Scholar
  8. Carlson, A. R., & Kosian, P. A. (1987). Toxicity of chlorinated benzenes to fathead minnows (Pimephales promelas). Archives of Environmental Contamination and Toxicology, 16, 129–135.CrossRefGoogle Scholar
  9. Canadian Arctic Resources Committee. (2000). http://carc.org/.
  10. Cooper, R. (1959). Bacterial fertilizers in the Soviet Union. Soils and Fertilizers, 22(5), 327–333.Google Scholar
  11. Cotham, W. E., & Bidleman, T. F. (1991). Estimating the atmospheric deposition of organic contaminants to the Arctic. Chemosphere, 22, 165–188.CrossRefGoogle Scholar
  12. Dill, P. A., & Saunders, R. C. (1974). Retarded behavioural development and impaired balance in Atlantic salmon (Salmo salar) alevins hatched from gastrulae exposed to DDT. Journal of the Fisheries Research Board of Canada, 31, 1936–1938.CrossRefGoogle Scholar
  13. Eisler, R. (1990). Chlordane hazards to fish, wildlife and invertebrates: A synoptic review. Fish and Wildlife Service, Biological Report, 85(1.21), 1–63.Google Scholar
  14. Falconer, R. L., & Bidleman, T. F. (1994). Vapor pressures and predicted particle/gas distributions of PCB congeners as functions of temperature and ortho-chlorine substitution. Atmospheric Environment, 28, 547–554.CrossRefGoogle Scholar
  15. Gardner, D. R. (1973). The effect of some DDT and methoxychlor analogues on temperature selection and lethality in brook trout fingerlings. Pesticide Biochemistry and Physiology, 2, 437–446.CrossRefGoogle Scholar
  16. Hansen, D. J., Goodman, L. R., & Wilson, A. J. (1977). Kepone: Chronic effects on embryo, fry, juvenile, and adult sheepshead minnows (Cyprinodon variegatus). Chesapeake Science, 18(2), 227.Google Scholar
  17. Hornbuckle, K. C., Jeremiason, J. D., Sweet, C. W., & Eisenreich, S. J. (1994). Seasonal variation in the air-water exchange of PCBs in Lake superior. Environmental Science and Technology, 28, 1491–1501.CrossRefGoogle Scholar
  18. Iwata, H., Tanabe, S., Sakai, H., & Tasukawa, R. (1993). Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environmental Science and Technology, 27, 1080–1098.CrossRefGoogle Scholar
  19. Jantunen, L. J., & Bidleman, T. F. (1995). Reversal of the air-water gas exchange of hexachlorocyclohexanes in the Bering and Chukchi seas: 1993 vs 1988. Environmental Science and Technology, 29, 1081–1089.CrossRefGoogle Scholar
  20. Koester, C. J., & Hites, R. A. (1992). Wet and dry deposition of chlorinated dioxins and furans. Environmental Science Technology, 26, 1375–1382.CrossRefGoogle Scholar
  21. Larsson, P., Järnmark, C., & Sodergren, A. (1992). PCBs and chlorinated pesticides in the atmosphere and aquatic organisms of Ross Island, Antarctica. Marine Pollution Bulletin, 25, 281–287.CrossRefGoogle Scholar
  22. Lockhart, W. L., Wagemann, R., Tracey, B., Sutherland, D., & Thomas, D. J. (1992). Presence and implications of chemical contaminants in the fresh waters of the Canadian Arctic. Science of the Total Environment, 122, 165–245.CrossRefGoogle Scholar
  23. Mackay, D., & Wania, F. (1995). Transport of contaminants to the Arctic: Partitioning, processes and models. Science of the Total Environment, 160/161, 25–38.CrossRefGoogle Scholar
  24. Mayer, F. L., Mehrle, P. M., & Dwyer, W. P. (1975). Toxaphene effects on reproduction, growth and mortality of brook trout (p. 43). Washington DC: US Environmental Protection Agency, Office of Research and Development.Google Scholar
  25. McConnell, L. L., Cotham, W. E., & Bidleman, T. F. (1993). Gas exchange of hexachlorocyclohexanes in the Great Lakes. Environmental Science and Technology, 27, 1304–1311.CrossRefGoogle Scholar
  26. McKenney, C. L. Jr. (1986). Critical responses of populations of crustacea to toxicants. Gulf Breeze, Florida, US Environmental Protection Agency, Environmental Research Laboratory (Environmental Research Brief EPA/600/M-86/004).Google Scholar
  27. Mehrle, P. M., & Mayer, F. L. (1975). Toxaphene effects on growth and development of brook trout (Salvelinus fontinalis). Journal of the Fisheries Research Board of Canada, 32, 593–598.CrossRefGoogle Scholar
  28. Mehrle, P. M., Buckler, D. R., Little, E. E., Smith, L. M., Petty, J. D., Peterman, P. H., & Stalling, D. L. (1988). Toxicity and bioconcentration of 2,3,7,8-tetrachlordibenzodioxin and 2,3,7,8- tetrachlorodibenzofuran in rainbow trout. Environmental Toxicology and Chemistry, 7, 47–62.CrossRefGoogle Scholar
  29. Metcalf, R. L., Kapoor, I. P., Lu, P. Y., Schuth, C. K., & Sherman, P. (1973). Model ecosystem studies of the environment and fate of six organochlorine pesticides. Environmental Health Perspectives, 4, 35–44.CrossRefGoogle Scholar
  30. Muir, D. C. G., Wagemann, R., Hargrave, B. T., Thomas, D. J., Peakall, D. B., & Norstrom, R. J. (1992). Arctic marine ecosystem contamination. Science of the Total Environment, 122, 75–134.CrossRefGoogle Scholar
  31. Nebeker, A. V., Puglisi, F. A., & DeFoe, D. L. (1974). Effect of polychlorinated biphenyl compounds on survival and reproduction of the fathead minnow and flagfish. Transactions of the American Fisheries Society, 3, 562–568.CrossRefGoogle Scholar
  32. Paris, D. F., Steen, W. C., Baughman, G. L., & Barnett, J. T. (1981). Second-order model to predict microbial degradation of organic compounds in natural waters. Applied and Environmental Microbiology, 41, 603–609.Google Scholar
  33. Peterson, R. H. (1973). Temperature selection of Atlantic salmon (Salmo Salar) and brook trout (Salvelinus fontinalis) as influenced by various chlorinated hydrocarbons. Journal of the Fisheries Research Board of Canada, 30, 1091–1097.CrossRefGoogle Scholar
  34. SETAC. (1996). In J. P. Carey, J. G. Cook, P. Hodson, D. Muir, W. Owens, R. Parrish, & K. Solomon (Eds.), Ecotoxicological risk assessment of the chlorinated organic chemicals. Pensacola, FL: SETAC Foundation for Education.Google Scholar
  35. Thomas, D. J., & Hamilton, M. C. (1988). Organochlorine residues in biota of the Baffin Island region. SeaKem Oceanography Ltd., Sidney, B.C. Report prepared for Indian and Northern Affairs Canada, Ottawa.Google Scholar
  36. Thomas, D. J., Tracey, B., Marshall, H., & Norstrom, R. J. (1992). Arctic terrestrial ecosystem contamination. Science of the Total Environment, 122, 135–164.CrossRefGoogle Scholar
  37. Walker, M. K., & Peterson, R. E. (1992). Toxicity of polychlorinated dobbins-p-dioxins, dibenzofurans and biphenyls during early development of fish. In T. Colborn & C. Clement (Eds.), Chemically induced alterations in sexual and functional development: The human/wildlife connection (pp. 195–202). Princeton, New Jersey: Princeton Scientific Publishing, Inc.Google Scholar
  38. Wania, F., & Mackay, D. (1993). Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio, 22, 10–18.Google Scholar
  39. WHO. (1989). Aldrin and Dieldrin. Environmental health criteria 91. Geneva: World Health Organization.Google Scholar
  40. WHO. (1992). The WHO recommended classification of pesticides by hazard. Guidelines to classification 1992–1993. Geneva: World Health Organization (WHO/PCS/92.14).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations