Advertisement

Lower Gangetic Delta: An Overview

  • Abhijit Mitra
Chapter

Abstract

Two mighty river systems, the Ganga and the Brahmaputra, enter the plains of Bengal through a 150-km-wide stretch as Rajmahal–Meghalaya gap. These two rivers drain a large catchment area covering more than 1.50 million sq. km. and carry annually 1254 billion cubic meters of water with suspended sediment load of about 1000 million tonnes. The fragile Himalayan terrain and southwest monsoon are two major factors contributing to huge volume of water and sediment load. After entering Bengal, the Ganga flows in southeast direction, and the Brahmaputra flows in the southern direction before they unite at a place called Gaolando in Bangladesh. These two rivers discharged into the sea independently till 1830. Further downstream, another river called Meghna joins, and the combined flow goes into the Bay of Bengal (Fig. 1.1).

Supplementary material

Suggested References

  1. Annandale, A. (1907). The fauna of the brackish ponds at port canning, lower Bengal. Records of the Indian Museum, 1, 33–43.Google Scholar
  2. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans. Vol.1, India. IUCN, Bangkok, Thailand.Google Scholar
  3. Hora, S. L. (1934). Brackish water animals of Gangetic Delta. Current Science, 2, 426–427.Google Scholar
  4. IUCN. (1989). Marine protected areas needs in the South Asian Seas Region, 2, India.Google Scholar
  5. Kemp, S. (1917). Notes on Fauna of the Matla river in the Gangetic delta. Records of the Indian Museum, 13, 233–292.Google Scholar
  6. Mandal, A. K. & Nandi, N. C. (1989). Fauna of Sundarban Mangrove Ecosystem, West Bengal, India. Fauna of Conservation Areas, Zoological Survey of India.Google Scholar
  7. Mitra, A. (2000). The north west coast of the bay of Bengal and deltaic Sundarbans. In Seas at the millennium: An environmental evaluation, U.K. (Vol. II, pp. 145–160). Pergamon, University of Michigan.Google Scholar
  8. Mitra, A., Trivedi, S., & Choudhury, C. (1994). Inter-relationship between trace metal pollution and physico-chemical variables in the frame work of Hooghly estuary. Indian Ports, 2, 27–35.Google Scholar
  9. Odum, H. T. (1971). Environment, power and society (p. 331). New York: Wiley.Google Scholar
  10. Pillay, T. V. R. (1958). Biology of Hilsa ilisha. Indian Journal of Forestry, 5(2), 201–257.Google Scholar
  11. Pitchaikani, J. S., Sen Sarma, K., & Bhattacharyya, S. (2017). First time report on the weather patterns over the Sundarban mangrove forest, East Coast of India. Indian Journal of Geo-Marine Sciences, 46(04), 766–770.Google Scholar
  12. Satyanarayana, D., Rao, I. M., & Prasada Reddy, B. R. (1990). Primary productivity, plants pigments and particular organic carbon of Visakhapatnam Harbour – A seasonal study. Proceeding of International Symposium of Marine Pollution, 287–300.Google Scholar
  13. Sidhu, S. S. (1963). Studies on Mangrove. Proceedings of the National Academy of Sciences, India, 33 (b), Part 1, 129–136.Google Scholar
  14. Stanley, D. J., & Warne, A. G. (1994). Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265, 228–231.CrossRefGoogle Scholar
  15. Stolicza, F. (1869). The malacology of lower Bengal and the adjoining provinces. 1, on the genus Onchidium. Journal of the Asiatic Society of Bengal, 38, 86–111.Google Scholar
  16. UNEP (1985). Environmental problems of the Marine and Coastal areas of India, UNEP Regional Seas Reports and studies, No. 59.Google Scholar

References of Annexure 1A.1

  1. Agarwal, S. K., Fazli, P., Zaman, S., & Mitra, A. (2018). Near surface air temperature and carbon dioxide in Indian sundarbans: A time series analysis. Parana Journal of Science Education, 4(1), 10–15.Google Scholar
  2. Banerjee, K., Mitra, A., Bhattacharyya, D. P., & Choudhury, A. (2002). Role of nutrients on phytoplankton diversity in the north–east coast of the bay of Bengal. In A. Kumar (Ed.), Ecology and ethology of aquatic biota (pp. 102–109). New Delhi: Daya Publishing House.Google Scholar
  3. Banerjee, K., Mitra, A., & Bhattacharyya, D. P. (2003). Phytopigment level of the aquatic subsystem of Indian Sundarbans at the apex of Bay of Bengal. Sea Explorers, 6, 39–46.Google Scholar
  4. Banerjee, K., Sengupta, K., Raha, A. K., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass and Bioenergy, 56, 382–391.CrossRefGoogle Scholar
  5. Barton, M., & Barton, A. C. (1987). Effects of salinity on oxygen consumption of Cyprinodon variegatus. Copeia, 1987, 230–232.CrossRefGoogle Scholar
  6. Bernal, P. A. (1993). Global climate change in the oceans: A review. In H. A. Mooney, E. R. Fuentes, & B. I. Kronberg (Eds.), Earth system responses to global change: Contrast between north and South America (pp. 1–15). San Diego, CA: Academic Press.Google Scholar
  7. Bethoux, J. P., Gentili, B., Raunet, J., & Tailliez, D. (1990). Warming trend in the western Mediterranean deep water. Nature, 347, 660–662.CrossRefGoogle Scholar
  8. Bindoff, N. L., & Church, J. A. (1992). Warming of the water column in the Southwest Pacific Ocean. Nature, 357, 59–62.CrossRefGoogle Scholar
  9. Bjørnstad, O. N., & Grenfell, B. T. (2001). Noisy clockwork: Time series analysis of population fluctuations in animals. Science, 293, 638–643.CrossRefGoogle Scholar
  10. Boesch, D. F., & Turner, R. E. (1984). Dependence of fishery species on salt marshes: The role of food and refuge. Estuaries, 7, 460–468.CrossRefGoogle Scholar
  11. Carlton, J. T. (1996). Pattern, process, and prediction in marine invasion ecology. Biological Conservation, 78, 97–106.CrossRefGoogle Scholar
  12. Cech, J. J., Jr., Mitchell, S. J., Castleberry, D. T., & McEnroe, M. (1990). Distribution of California stream fishes: Influence of environmental temperature and hypoxia. Environmental Biology of Fishes, 29, 95–105.CrossRefGoogle Scholar
  13. Chakraborty, S. K., & Choudhury, A. (1985). Distribution of fiddler crabs in Sundarbans mangrove estuarine complex, India. Proceedings of National Symposium on Biology, Utilization and Conservation of Mangroves, 467–472.Google Scholar
  14. Daniels, R. C., White, T. W., & Chapman, K. K. (1993). Sea-level rise: Destruction of threatened and endangered species habitat in South Carolina. Environmental Management, 17, 373–385.CrossRefGoogle Scholar
  15. Donaldson, E. M. (1990). Reproductive indices as measures of the effects of environmental stressors. American Fisheries Society Symposium, 8, 145–166.Google Scholar
  16. Francour, P., Boudouresque, C. F., Harmelin, J. G., Harmelin-Vivien, M. L., & Quignard, J. P. (1994). Are the Mediterranean waters becoming warmer? Information from biological indicators. Marine Pollution Bulletin, 28, 523–526.CrossRefGoogle Scholar
  17. Fukasawa, M., Freeland, H., Perkin, R., Watanabe, T., Uchida, H., & Nishina, A. (2004). Bottom water warming in the North Pacific Ocean. Nature, 427, 825–827.CrossRefGoogle Scholar
  18. Horn, M. H., Martina, K. L. M., & Chotkowski, M. A. (1999). Intertidal fishes: Life in two worlds (p. 399). San Diego, CA: Academic Press.Google Scholar
  19. Kennedy, V. S. (1990). Anticipated effects of climate changes on estuarine and coastal fishes. Fisheries, 15, 16–24.CrossRefGoogle Scholar
  20. Kwon, O. Y., & Schnoor, J. L. (1994). Simple global carbon model: The atmosphere-terrestrial biosphere-ocean interaction. Global Biochemical Cycles., 8, 295–305.CrossRefGoogle Scholar
  21. Levitus, S., Antonov, J. I., Boyer, T. P., & Stephens, C. (2000). Warming of the world ocean. Science, 287, 2225–2229.CrossRefGoogle Scholar
  22. Manabe, S., Stouffer, R. J., & Spelman, M. J. (1994). Response of a coupled ocean atmosphere model to increasing atmosphere carbon dioxide. Ambio, 23(1), 44–49.Google Scholar
  23. Mitra, A. (2013). In: Sensitivity of Mangrove Ecosystem to Changing Climate by Dr. Abhijit Mitra. Publisher Springer New Delhi/Heidelberg/New York/Dordrecht/London, 2013 edition (August 31, 2013); ISBN-10: 8132215087; ISBN-13: 978-8132215080, copyright Springer, India 2013; ISBN 978-81-322-1509-7 (eBook).Google Scholar
  24. Mitra, A., & Choudhury, A. (1994). Heavy metal concentrations in oyster Crassostrea cucullata of Henry’s island, India. Journal of Ecobiology, 6(2), 157–159.Google Scholar
  25. Mitra, A., & Zaman, S. (2014). Carbon sequestration by coastal floral community. New Delhi: The Energy and Resources Institute (TERI) TERI Press.Google Scholar
  26. Mitra, A., & Zaman, S. (2015). Blue carbon reservoir of the blue planet published by Springer, ISBN 978–81–322-2106-7 (Springer). Springer, India,  https://doi.org/10.1007/978-81-322-2107-4.
  27. Mitra, A., & Zaman, S. (2016). Basics of marine and estuarine ecology, Springer. ISBN 978-81-322-2705-2. Springer, India.Google Scholar
  28. Mitra, A., Ghosh, P. B., & Choudhury, A. (1987). A marine bivalve Crassostrea cucullata can be used as an indicator species of marine pollution. Proceedings of the National Seminar on Estuarine Management (pp. 177–180).Google Scholar
  29. Mitra, A., Choudhury, A., & Zamaddar, Y. A. (1992). Effects of heavy metals on benthic molluscan communities in Hooghly estuary. Proceedings of the Zoological Society (Calcutta), 45, 481–496.Google Scholar
  30. Mitra, A., Banerjee, K., Sengupta, K., & Gangopadhyay, A. (2009). Pulse of climate change in Indian Sundarbans: A myth or reality. National Academy Science Letters, 32, 1–7.Google Scholar
  31. Mitra, A., Halder, P., & Banerjee, K. (2011). Changes of selected hydrological parameters in Hooghly estuary in response to a severe tropical cyclone (Aila). Indian Journal of Geo-Marine Sciences, 40(1), 32–36.Google Scholar
  32. Mondal, K., Mukhopadhyay, S. K., Biswas, H., De, T. K., & Jana, T. K. (2006). Fluxes of nutrients from the tropical river Hooghly at the land–ocean boundary of Sundarbans, NE coast of Bay of Bengal, India. Journal of Marine Systems, 62, 9–21.CrossRefGoogle Scholar
  33. Moyle, P. B., & Cech, J. J., Jr. (2004). Fishes: An introduction to ichthyology (5th ed.p. 726). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  34. Officer, C. B., Biggs, R. B., Taft, J. L., Cronin, L. E., Tyler, M. A., & Boynton, W. R. (1984). Chesapeake Bay anoxia: Origin, development and significance. Science, 223, 22–27.CrossRefGoogle Scholar
  35. Parrilla, G., Lavin, A., Bryden, H., Garcia, M., & Millard, R. (1994). Rising temperatures in the subtropical North Atlantic Ocean over the past 35 years. Nature, 369, 48–51.CrossRefGoogle Scholar
  36. Pitchaikani, J. S., Sen Sarma, K., & Bhattacharyya, S. (2017). First time report on the weather patterns over the Sundarban mangrove forest, East Coast of India. Indian Journal of Geo-Marine Sciences, 46(04), 766–770.Google Scholar
  37. Pörtner, H. O., Berdal, B., Blust, R., Brix, O., Colosimo, A., De Wachter, B., Giuliani, A., Johansen, T., Fischer, T., Knust, R., Lannig, G., Naevdal, G., Nedenes, A., Nyhammer, G., Sartoris, F. J., Serendero, I., Sirabella, P., Thorkildsen, S., & Zakhartsev, M. (2001). Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: Developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Continental Shelf Research, 21, 1975–1997.CrossRefGoogle Scholar
  38. Quay, P. (2002). Ups and downs of CO2 uptake. Science, 298, 2344.CrossRefGoogle Scholar
  39. Ray, G. C., Hayden, B. P., Bulger, A. J., Jr., & McCormick-Ray, M. G. (1992). Effects of global warming on the biodiversity of coastal-marine zones. In R. L. Peters & T. E. Lovejoy (Eds.), Global warming and biological diversity (pp. 91–104). New Haven, CT: Yale University Press.Google Scholar
  40. Richardson, A. J., & Schoeman, D. S. (2004). Climate impact on plankton ecosystems in the Northeast Atlantic. Science, 305, 1609–1612.CrossRefGoogle Scholar
  41. Rose, G. A., deYoung, B., Kulka, D. W., Goddard, S. V., & Fletcher, G. L. (2000). Distribution shifts and overfishing the northern cod (Gadus morhua): A view from the ocean. Canadian Journal of Fisheries and Aquatic Sciences, 57, 644–663.CrossRefGoogle Scholar
  42. Ruiz, G. M., Hines, A. H., & Posey, M. H. (1993). Shallow water as a refuge habitat for fishes and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay. Marine Ecology Progress Series, 99, 1–16.CrossRefGoogle Scholar
  43. Saha, S. B., Mitra, A., Bhattacharyya, S. B., & Choudhury, A. (1999). Heavy metal pollution in Jagannath canal, an important tidal water body of the north Sundarbans aquatic ecosystem of West Bengal. Indian Journal of Environmental Protection, 19, 801–804.Google Scholar
  44. Schwartz, F. J. (1998). Fishes affected by freshwater and/or marine intrusions in North Carolina. Journal of the Elisha Mitchell Scientific Society, 114, 173–189.Google Scholar
  45. Sengupta, K., Roy Chowdhury, M., Bhattacharya, S. B., Raha, A. K., Zaman, S., & Mitra, A. (2013). Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Disco Nature, 3(8), 19–24.Google Scholar
  46. Sheppard, C. (2001). The main issues affecting coasts of the Indian and western Pacific oceans: A meta-analysis from sea at the millennium. Marine Pollution Bulletin, 42, 1199–1207.CrossRefGoogle Scholar
  47. Stevenson, J. C., Kearny, M. S., & Kock, E. W. (2002). Impacts of sea level rise on tidal wetlands and shallow water habitats: A case study from Chesapeake Bay. In N. A. McGinn (Ed.), Fisheries in a changing climate (pp. 23–36). Bethesda, MD: American Fisheries Society Symposium 32.Google Scholar
  48. Taylor, A. H., & Stephens, J. A. (1998). The North Atlantic oscillation and the latitude of the Gulf stream. Tellus, 50A, 134–142.CrossRefGoogle Scholar
  49. Trenberth, K. E. (1997). The use and abuse of climate models. Nature, 386, 131–133.CrossRefGoogle Scholar
  50. Wainwright, P. C. (1994). Functional morphology as a tool in ecological research. In P. C. Wainwright & S. M. Reilly (Eds.), Functional morphology: Integrative organismal biology (pp. 42–59). Chicago, IL: Chicago University Press.Google Scholar
  51. Whitney, F. A., & Freeland, H. J. (1999). Variability in upper-ocean water properties in the NE Pacific. Deep-Sea Research, 46, 2351–2370.CrossRefGoogle Scholar
  52. Woodwell, G. M., Mackenzie, F. T., Houghton, R. A., Apps, M., Gorham, E., & Davidson, E. (1998). Biotic feedbacks in the warming of the earth. Climatic Change, 40, 495–518.CrossRefGoogle Scholar
  53. Zabel, R. W., Harvey, C. J., Katz, S. L., Good, T. P., & Levin, P. S. (2003). Ecologically sustainable yield. American Scientist, 91, 150–157.CrossRefGoogle Scholar
  54. Zhang, X., Vincent, L. A., Hogg, W. D., & Niitsoo, A. (2000). Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean, 38, 395–429.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Abhijit Mitra
    • 1
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations