Advertisement

Fish Assemblages of the ‘Alte Donau’ System: Communities Under Various Pressures

  • Herwig WaidbacherEmail author
  • Silke-Silvia Drexler
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 10)

Abstract

‘Alte Donau’ was formerly a major arm of the braided Danube in Vienna and served as habitat for a cold-water river fish assemblage. After river regulation, the habitat types for fish changed towards a warm-water fish environment with high temperature, high nutrient content and reasonable macrophyte stands. Accordingly, the fish species and biomasses changed in the direction of backwater fish compositions. Currently, 22 fish species are recorded. In the early 1990ies, the macrophyte stands collapsed and heavy blooms of algae and cyanobacteria produced very instable habitat conditions, particularly in summer, close to oxygen depletion, and fish kills. A main nutrient source for algal growth, phosphorus, was removed from the water column by an Iron-III-Chloride treatment, and the fish community responded by consuming food particles from benthic and surface areas instead of the missing plankton. Despite these ecosystem changes, no increased mortality in the fish community was observed during this period. With the intention of keeping high transparency in the water column, a bio-manipulation experiment was introduced by increasing predators via stocking to reduce plankton feeding Bleak. The species Asp was the most effective predator (consuming up to 5.8 individuals of bleak/day), followed by Pike and Pike-Perch. The water transparency – expressed as Secchi depth – increased by up to 15 centimeters in the experimental area ‘Kaiserwasser’, compared to the control sections.

Most of the fish species occurring in the Alte Donau are connected to macrophyte stands, at least in some stages of their life span. Denser water plant communities (expressed in CKI – Cumulative Kohler Index) are not only preferred as habitats by young of the year-class fishes, fish larvae and foragers, but are also used as spawning grounds. There is a clear correlation between the density of plants and fish in the horizontal distribution across the water body of the Alte Donau. Furthermore, the vertical distribution of fish was also associated with plant stock density. Management of macrophytes is done regularly through mowing activities and plant harvesting. It is important to note that young fish should have the opportunity to escape from a dense macrophyte canopy before the plant biomass is removed from the water column. Small boats with mowing bars and separated macrophyte harvesting devices exert clearly less pressure on accidentally removed individuals out of the living habitat (31.3 kg of harvested macrophytes with 1 removed fish – immediate convey belt harvesting after mowing remove 1 fish every 2.1 kg).

Keywords

Biomanipulation Fish survey Fish stocking Cyprinids Enclosure-experiment Stomach and intestinal content Feed analyses Food chain Iron-III-Chloride treatment Ecological measures 

Notes

Acknowledgments

This study was supported by several grants from the Municipal Department – 45 (Water Management – Vienna). We would like to thank all of the numerous collaborators, master students, PhD students and the Municipal Department for permission of publication. Additionally, we are grateful for the long lasting generous support of the ‘Österreichische Fischereigesellschaft gegr. 1880” and the support with data. We also want to thank Ms. Erika Thaler for her support in improving our English writing and the “Wiener Fischereiausschuss” for providing fish catch and stocking long-term data of the Alte Donau.

References

  1. Adelmann A (1999) Fischökologische Untersuchungen an ausgewählten Augewässern östlich von Wien unter besonderer Berücksichtigung der Ökotonrelevanz. Diplomarbeit an der Universität für Bodenkultur Wien, Wien, p 158Google Scholar
  2. Bean CW, Winfield IJ (1995) Habitat use and activity patterns of roach (Rutilus rutilus L.), perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the laboratory: the role of predation threat and structural complexity. Ecol Freshw Fish 4:37–46CrossRefGoogle Scholar
  3. Begon M, Harper JL, Townsend CR (1991) Ökologie: Individuen, Populationen und Lebensgemeinschaften. Birkhäuser Verlag, Basel/Boston/Berlin, p 1031CrossRefGoogle Scholar
  4. Berg S, Hjorne M, Jacobsen L, Landkildehus F, Lauridsen TL, Perrow MR (1997) Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343:197–205CrossRefGoogle Scholar
  5. Bohle HW (1995) Limnische Systeme. Springer Verlag, Heidelberg, p 276Google Scholar
  6. Christensen B, Persson L (1993) Species-specific antipredatory behaviours: effects on prey choice in different habitats. Behav Ecol Sociobiol 32:1–9CrossRefGoogle Scholar
  7. Conrow R, Gewgory RW, Zale AV (1990) Distributions and abundances of early life stages of fishes in a Florida lake dominated by aquatic macrophytes. Trans Am Fish Soc 119:521–528CrossRefGoogle Scholar
  8. Cowx IG, Welcomme RL (eds) (1998) Rehabilitation of rivers for fish. Fishing News Books, Oxford, 160 p. In: PETR T (2000) Interactions between fish and aquatic macrophytes in inland waters. A review. Rome. FAO Fisheries Technical Paper 396:185Google Scholar
  9. Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63(6):1802–1813CrossRefGoogle Scholar
  10. Dawidowicz P (1990) Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201:43–47CrossRefGoogle Scholar
  11. Diehl S (1993) Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships. Oikos 68:151–157CrossRefGoogle Scholar
  12. Diehl S, Kornijów R (1998) Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In: Jeppesen E, Sondergaard M, Sondergaard M, Christoffersen K (eds) The structuring roles of submerged macrophytes in lakes. Springer, Berlin/Heidelberg/New York, pp 24–46CrossRefGoogle Scholar
  13. Dokulil M (ed.) et al (1995) Limnologische Untersuchung zur Sanierung der Alten Donau. Bericht im Auftrag der MA 45 – Wasserbau, p 106Google Scholar
  14. Fickling N (1981) Zander. Sonderheft der Zeitschrift Blinker:54–55Google Scholar
  15. Gaygalas KS (1977) Morpho-ecological characteristics and economic importance of the Asp (Aspius aspius) in the basin of the Kurshyu Mares (Courland Lagoon). J Appl Ichthyol 17(6):856–863Google Scholar
  16. Haidvogl G (2010) Verschwundene Fische und trockene Auen. Wie Regulierung und Kraftwerksbau das Ökosystem Donau im Machland verändert haben. In: Winiwarter V und Schmid M, Umwelt Donau: Eine andere Geschichte. Katalog zur Ausstellung des Niederösterreichischen Landesarchivs im ehemaligen Pfarrhof in Ardagger Markt. 5. Mai – 7. November 2010, pp 118–135Google Scholar
  17. Hansen JP (1987) Raubfische angeln. BLV Verlagsgesellschaft, München/Wien/Zürich, p 175Google Scholar
  18. Hartmann J (1975) Der Barsch (Perca fluviatilis) im eutrophierten Bodensee. Arch Hydrobiol 76:269–286Google Scholar
  19. Heck KL, Crowder LB (1991) Habitat structure and predator–prey interactions in vegetated aquatic systems. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat complexity: the physical arrangement of objects in space. Chapman and Hall, New York, pp 280–299Google Scholar
  20. Hohensinner S, Jungwirth M, Muhar S, Schmutz S (2011) Spatio-temporal habitat dynamics in a changing Danube River landscape 1812–2006. River Res Appl 27(8):939–955CrossRefGoogle Scholar
  21. Hokanson KEF (1977) Temperature requirements of some percids and adaptations to seasonal temperature cycle. J Fish Res Board Can 34(10):1524–1550CrossRefGoogle Scholar
  22. Kangur A, Kangur P (1996) The condition, length and age distribution of pike perch Stizostedion lucioperca (L.) in Lake Peipsi. Hydrobiologia 338:179–183CrossRefGoogle Scholar
  23. Kohler A (1978) Methoden zur kartierung von flora und vegetation von süßwasserbiotopen. Landschaft und Stadt 10/2:73–85Google Scholar
  24. Kohler A, Janauer GA (1995) Zur Methodik der Untersuchung von aquatischen Makrophyten in Fließgewässern. Handbuch Angewandte Limnologie 8(1.1):3Google Scholar
  25. Lampert W, Sommer U (1993) Limnoökologie. G Thieme Verlag, Stuttgart, p 440Google Scholar
  26. Lehtonen H, Hansson S, Winkler H (1996) Biology and exploitation of pikeperch, Stizostedion lucioperca (L.), in the Baltic Sea area. Ann Zool Fenn 33:525–535Google Scholar
  27. Löffler H (1988) Alte Donau. Limnologische Projektstudie – Ökosystem Alte Donau. Projektstudie im Auftrag der Wasserstrassendirektion:262Google Scholar
  28. Martyniak A, Heese T (1994) Growth rate and age composition of asp Aspius aspius (L., 1758) from Pierzchaly reservoir. Acta Ichthyol Piscat 24(1):55–67CrossRefGoogle Scholar
  29. Moser V (2001) Untersuchung der Makrophytenstrukturen und ihre Habitatnutzung durch Fischbiozönosen an der Alten Donau mittels ‘Air-Lift”- und Netzbefischungen unter besonderer Berücksichtigung der Wiederbesiedelung einer fischfreien Versuchszone. Diplomarbeit an der Universität für Bodenkultur Wien. Wien, p 213Google Scholar
  30. Nagięć M (1977) Pikeperch (Stizostedion lucioperca) in his natural habits in Poland. J Fish Res Board Canada 34(10):1581–1585CrossRefGoogle Scholar
  31. Opuszynski K (1992) Are herbivorous fish herbivorous? Aqua 12(2):1, 12–13. In: PETR T (2000) Interactions between fish and aquatic macropyhtes in inland waters. A review. Rome. FAO Fisheries Technical Paper 396:185Google Scholar
  32. Opuszynski K, Shireman JV (1995) Herbivorous fishes. Culture and use for weed management. CRS Press, Boca Raton, 223 p. In: PETR T (2000) Interactions between fish and aquatic macropyhtes in inland waters. A review. Rome. FAO Fisheries Technical Paper 396:185Google Scholar
  33. Pall K (1996) Die Makrophytenvegetation des Attersees und ihre Bedeutung für die Beurteilung des Gewässerzustandes. Kartenanhang. In: Oberösterreichischer Seeuferkataster, Pilotprojekt Attersee; Studie im Auftrag der OÖ Landesregierung, sowie des BM für Land- und Forstwirtschaft, p 86Google Scholar
  34. Persson L (1993) Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68:12–22CrossRefGoogle Scholar
  35. Petr T (2000) Interactions between fish and aquatic macrophytes in inland waters. A review. Rome FAO Fisheries Technical Paper 396, p 185Google Scholar
  36. Popova OA, Sytina LA (1977) Food and feeding relations of Eurasian perch and PikePerch in various water of the USSR. J Fish Res Board Canada 34(10):1559–1570CrossRefGoogle Scholar
  37. Prejs A (1984) Herbivory by temperate freshwater fishes and its consequences. Environ Biol Fish 10:281–296CrossRefGoogle Scholar
  38. Randall RG, Minns CK, Cairns VW, Moore JE (1996) The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Can J Aquat Sci 53(Suppl.1):35–44. In: PETR T (2000) Interactions between fish and aquatic macrophytes in inland waters. A review. Rome. FAO Fisheries Technical Paper 396:185Google Scholar
  39. Reiter D (2001) Untersuchung der Makrophytenstrukturen und ihre Habitatnutzung durch Fischbiozönosen an der Alten Donau mittels Air-Lift-Befischung unter besonderer Berücksichtigung zweier ausgewählter Habitate im zeitlichen Verlauf. Diplomarbeit an der Universität für Bodenkultur Wien. Wien, p 156Google Scholar
  40. Salonen S, Helminen H, Sarvala J (1996) Feasibility of controlling coarse fish populations through PikePerch (Stizostedion lucioperca) stocking in lake Kyöliönjärvi, SW Finland. Ann Zool Fenn 33:451–457Google Scholar
  41. Savino JF, Stein RA (1982) Predator-prey interaction between largemouth bass and bluegrills as influenced by simulated, submersed vegetation. Trans Am Fish Soc 111:255–266CrossRefGoogle Scholar
  42. Schiemer F, Waidbacher H (1992) Strategies for conservation of a Danubian fish fauna. In: Boon PJ, Calow P, Petts GE (eds) River conservation and management. Wiley, Chichester, pp 363–382Google Scholar
  43. Schwoerbel J (1993) Einführung in die Limnologie. UTB, G. Fischer, Stuttgart, 7. Auflage, p 387Google Scholar
  44. Spindler T (1997) Fischfauna in Österreich Umweltbundesamt Monographien, Band 87. BM für Umwelt, Jugend und Familie, Wien, p 140Google Scholar
  45. Werner EE, Mittelbach GG, Hall DJ (1981) The role of foraging probability and experience in habitat use by the bluegill sunfish. Ecology 62:116–125. In: Petr T (2000) Interactions between fish and aquatic macrophytes in inland waters. A review. Rome. FAO Fisheries Technical Paper 396:185Google Scholar
  46. Willemsen J (1978) Influence of temperature on feeding, growth and mortality of pike perch and perch. Stuttgart, Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 20(3):2127–2133Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Water, Atmosphere and EnvironmentInstitute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, ViennaViennaAustria

Personalised recommendations