Advertisement

Prognostic and Predictive Factors in Breast Carcinoma

  • Simona Stolnicu
Chapter

Abstract

Regarding breast cancer, there are well-known clinical, pathological, and molecular prognostic and predictive factors documented by several studies especially within the last decades. From a pathological point of view, these factors need to be evaluated while examining a breast carcinoma, and it is the pathologist’s important role to perform this in each case and to include this information in the final pathology report. Based on these factors, patients with breast cancer are divided into those with good prognosis and those with bad prognosis. Also, based on these factors, management is established in every case and the response to the treatment is estimated. Since the evaluation of these parameters is so important in breast pathology, it is necessary for the pathologist dealing with breast carcinoma cases to have experience in this field. Also, especially regarding the evaluation of the markers performed to classify a tumor from a molecular point of view, every laboratory performing these tests is responsible for providing accurate and reproducible results.

Keywords

Prognosis Stage Management Molecular profile 

References

  1. 1.
    Wallack MK, Wolf JA Jr, Bedwinek J, Denes AE, Glasgow G, Kumar B, et al. Gestational carcinoma of the female breast. Curr Probl Cancer. 1983;7(9):1–58.CrossRefGoogle Scholar
  2. 2.
    Petrek JA. Breast cancer during pregnancy. Cancer. 1994;74:518–27.CrossRefGoogle Scholar
  3. 3.
    Petrek JA, Dukoff R, Rogatko A. Prognosis of pregnancy-associated breast cancer. Cancer. 1991;67:869–72.CrossRefGoogle Scholar
  4. 4.
    Ruiz R, Herrero C, Strasser-Weippl K, Touya D, St Louis J, Bukowski A, et al. Epidemiology and pathophysiology of pregnancy-associated breast cancer. A review. Breast. 2017;35:136–41.CrossRefGoogle Scholar
  5. 5.
    Fisher ER, Fisher B, Sass R, Wickerham L. Pathologic findings from the national surgical adjuvant breast project (protocol no 4). XI. Bilateral breast cancer. Cancer. 1984;54:3002–11.CrossRefGoogle Scholar
  6. 6.
    Haagensen CD. Diseases of the breast. 2nd ed. Philadelphia, PA: WB Saunders; 1971. p. 449–58.Google Scholar
  7. 7.
    Leis HP Jr. Managing the remaining breast. Cancer. 1980;46:1026–30.CrossRefGoogle Scholar
  8. 8.
    Robbins GF, Berg JW. Bilateral primary breast cancers; a prospective clinicopathological study. Cancer. 1964;17:1501–27.CrossRefGoogle Scholar
  9. 9.
    Wanebo HJ, Senofsky GM, Fechner RE, Kaiser D, Lynn S, Paradies J. Bilateral breast cancer. Risk reduction by contralateral biopsy. Ann Surg. 1985;201:667–77.CrossRefGoogle Scholar
  10. 10.
    Karakas Y, Kertemen N, Lacin S, Aslan A, Demir M, Ates O, et al. Comparison of prognosis and clinical features between synchronous bilateral and unilateral breast cases. JBUON. 2017;22(3):623–7.PubMedGoogle Scholar
  11. 11.
    Katz A, Strom EA, Buchholtz TA, Theriault R, Singletary SE, McNeese MD. The influence of pathologic tumor characteristics on locoregional recurrence rates following mastectomy. Int J Radiat Oncol Biol Phys. 2001;50(3):735–42.CrossRefGoogle Scholar
  12. 12.
    Yerushalmi R, Kennecke H, Woods R, Olivotto IA, Speers C Gelmon KA. Does multicentric/multifocal breast cancer differ from unifocal breast cancer? An analysis of survival and contralateral breast cancer incidence. Breast Cancer Res Treat. 2009;117(2):365–70.CrossRefGoogle Scholar
  13. 13.
    Tot T. The role of large-format histopathology in assessing subgross morphological prognostic parameters: a single institution report of 1000 consecutive breast cancer cases. Int J Breast Cancer. 2012;2012:395415.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Fish EB, Chapman JA, Link MA. Assessment of tumor size for multifocal primary breast cancer. Ann Surg Oncol. 1998;5:442–6.CrossRefGoogle Scholar
  15. 15.
    Joergensen LE, Gunnarsdottir KA, Lanng C, Moeller S, Rasmussen BB. Multifocality as a prognostic factor in breast cancer patients registered in Danish Breast Cancer Cooperative Group (DBCG) 1996–2001. Breast. 2008;17:587–91.CrossRefGoogle Scholar
  16. 16.
    Pedersen L, Gunnarsdottir KA, Rasmussen BB, Moeller S, Lanng C. The prognostic influence of multifocality in breast cancer patients. Breast. 2004;13:188–93.CrossRefGoogle Scholar
  17. 17.
    Tot T. Clinical relevance of the distribution of the lesions in 500 consecutive breast cancer cases documented in large-format histologic sections. Cancer. 2007;110(11):2551–60.CrossRefGoogle Scholar
  18. 18.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti AIII, et al. AJCC cancer staging manual, vol. 7. New York, NY: Springer; 2010.Google Scholar
  19. 19.
    Sobin LH, Gospodarowicz MK, Wittekind C, editors. TNM classification of malignant tumors 7. Oxford: Wiley-Blackwell; 2009.Google Scholar
  20. 20.
    Boros M, Marian C, Moldovan C, Stolnicu S. Morphological heterogeneity of the simultaneous ipsilateral invasive tumor foci in breast carcinoma: a retrospective study of 418 cases of carcinomas. Pathol Res Pract. 2012;208(10):604–9.CrossRefGoogle Scholar
  21. 21.
    Boros M, Ilyes A, Nechifor Boila A, Moldovan C, Eniu A, Stolnicu S. Morphologic and molecular subtype status of individual tumor foci in multiple breast carcinoma. A study of 155 cases with analysis of 463 tumor foci. Hum Pathol. 2014;45(2):409–16.CrossRefGoogle Scholar
  22. 22.
    Boros M, Voidazan S, Moldovan C, Georgescu R, Toganel C, Moncea D, et al. Clinical implications of multifocality as a prognostic factor in breast carcinoma: a multivariate analysis study comprising 460 cases. Int J Clin Exp Med. 2015;8(6):9839–46.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tavassoli FA. Pathology of the breast. 2. Appleton and Lange: Stamford, CT; 1999.Google Scholar
  24. 24.
    Lakhani SR, Ellis IO, Schnitt S, Tan PH, van de Vijver MJ. World Health Organization classification of tumors of the breast. 4th ed. Lyon: IARC Press; 2012. p. 10–71.Google Scholar
  25. 25.
    Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW. Pathological prognosis factors in breast carcinoma. II. Histologic type. Relationship with survival in a large study with long-term follow-up. Histopathology. 1992;20:479–89.CrossRefGoogle Scholar
  26. 26.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.CrossRefGoogle Scholar
  27. 27.
    Roylance R, Gorman P, Harris W, Liebmann R, Barnes D, Hanby A, et al. Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer. 1999;59:1433–6.Google Scholar
  28. 28.
    Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.CrossRefGoogle Scholar
  29. 29.
    Ellis IO, Elston CW. Histologic grade. In: O’Malley FP, Pinder SE, Mulligan AM, editors. Breast pathology. Philadelphia, PA: Elsevier; 2006.Google Scholar
  30. 30.
    Ro JY, Silva EG, Gallager HS. Adenoid cystic carcinoma of the breast. Hum Pathol. 1987;18(12):1276–81.CrossRefGoogle Scholar
  31. 31.
    Rosen PP. Adenoid cystic carcinoma of the breast. A morphologically heterogeneous neoplasm. Pathol Annu. 1989;24Pt2:237–54.Google Scholar
  32. 32.
    Pinder SE, Ellis IO, Galea M, O’Rourke S, Blamey RW, Elston CW. Pathological prognostic factors in breast cancer. III. Vascular invasion: relationship with recurrence and survival in a large series with long-term follow-up. Histopathology. 1994;24:41–7.CrossRefGoogle Scholar
  33. 33.
    Carlomagno C, Perrone F, Lauria R, de Laurentiis M, Gallo C, Morabito A, et al. Prognostic significance of necrosis, elastosis, fibrosis and inflammatory cell reaction in operable breast cancer. Oncology. 1995;52:272–7.CrossRefGoogle Scholar
  34. 34.
    Ishihara A, Tsuda H, Kitagawa K, Yoneda M, Shiraishi T. Morphological characteristics of basal-like subtype of breast carcinoma with special reference to cytopathological features. Breast Cancer. 2009;16(3):179–85.CrossRefGoogle Scholar
  35. 35.
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26:259–71.CrossRefGoogle Scholar
  36. 36.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Lawrence N, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials. ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.CrossRefGoogle Scholar
  37. 37.
    Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Onco. 2014;25:1544–50.CrossRefGoogle Scholar
  38. 38.
    Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.CrossRefGoogle Scholar
  39. 39.
    Schnitt SJ, Connolly JL, Harris JR, Hellman S, Cohen RB. Pathologic predictors of early local recurrence in stage I and II breast cancer treated by primary radiation therapy. Cancer. 1984;53(5):1049–57.CrossRefGoogle Scholar
  40. 40.
    Schnitt SJ, Connolly JL, Khettry U, Mazoujian G, Brenner M, Silver B, et al. Pathologic finding on re-excision of the primary site in breast cancer patients considered for treatment by primary radiation therapy. Cancer. 1987;59(4):675–81.CrossRefGoogle Scholar
  41. 41.
    NCCN. NCCN clinical practice guideline in oncology (NCCN guidelines). NCCN.org: Breast Cancer; 2017.Google Scholar
  42. 42.
    Houssami N, Macaskill P, Marinovich ML, Dixon JM, Irwig L, Brennan ME, et al. Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur J Cancer. 2010;46(18):3219–32.CrossRefGoogle Scholar
  43. 43.
    Moran MS, Schnitt SJ, Giuliano AE, Harris JR, Khan SA, Horton J, et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J Clin Oncol. 2014;32(14):1507–15.CrossRefGoogle Scholar
  44. 44.
    Vinh-Hung V, Nguyen NP, Cserni G, Truong P, Woodward W, Verkooijen HM, et al. Prognostic value of nodal ratios in node-positive breast cancer: a compiled update. Future Oncol. 2009;5(10):1585–603.CrossRefGoogle Scholar
  45. 45.
    Martin FT, O’Fearraigh C, Hanley C, Curran C, Sweeney KJ, Kerin MJ. The prognostic significance of nodal ratio on breast cancer recurrence and its potential for incorporation in a new prognostic index. Breast J. 2013;19(4):388–93.CrossRefGoogle Scholar
  46. 46.
    Wilson RE, Donegan WL, Mettlin C, Natarajan N, Smart CR, Murphy GP. The 1982 national survey of carcinoma of the breast in the United States by the American College of Surgeons. Surg Gynecol Obstet. 1984;159:309–18.PubMedGoogle Scholar
  47. 47.
    Hurvos AG, Hutter RV, Berg JW. Significance of axillary macrometastases and micrometastases in mammary cancer. Ann Surg. 1971;173(1):44–6.CrossRefGoogle Scholar
  48. 48.
    Chen SL, Hoehne FM, Giuliano AE. The prognostic significance of micrometastases in breast cancer: a SEER population-based analysis. Ann Surg Oncol. 2007;12:3378–84.CrossRefGoogle Scholar
  49. 49.
    Weaver DL. Pathology evaluation of sentinel lymph nodes in breast cancer: protocol recommendations and rationale. Mod Pathol. 2010;23(Suppl 2):S26–32.CrossRefGoogle Scholar
  50. 50.
    Weaver DL, Ashikaga T, Krag DN, Skelly JM, Anderson SJ, Harlow SP, et al. Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med. 2011;364:412–21.CrossRefGoogle Scholar
  51. 51.
    Weaver DL. Sentinel node biopsy and lymph node classification in the 6th edition staging manual. In: O’Malley FP, Pinder SE, Mulligan AM, editors. Breast pathology. Philadelphia, PA: Elsevier; 2006. p. 257.CrossRefGoogle Scholar
  52. 52.
    Daien CI, Monnier A, Claudepierre P, Constantin A, Eschard JP, Houvenagel E, et al. Sarcoid-like granulomatosis in patients treated with tumor necrosis factor blockers: 10 cases. Rheumatology (Oxford). 2009;48(8):883–6.CrossRefGoogle Scholar
  53. 53.
    Stolnicu S, Preda O, Kinga S, Marian C, Nicolau R, Andrei S, et al. Florid papillary endosalpingiosis of the axillary lymph nodes. Breast J. 2011;17(3):268–72.CrossRefGoogle Scholar
  54. 54.
    Takhar AS, Ney A, Patel M, Sharma A. Extramedullary haematopoiesis in axillary lymph nodes following neoadjuvant chemotherapy for locally advanced breast cancer. BMJ Case Rep. 2013;pii:bcr2013008943.  https://doi.org/10.1136/bcr-2013-008943.CrossRefGoogle Scholar
  55. 55.
    Hoda SA, Resetkova E, Yusuf Y, Cahan A, Rosen PP. Megakaryocytes mimicking metastatic breast carcinoma. Arch Pathol Lab Med. 2002;126(5):618–20.PubMedGoogle Scholar
  56. 56.
    Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham prognostic index in primary breast cancer. Breast Cancer Res Treat. 1992;22:207–19.CrossRefGoogle Scholar
  57. 57.
    Mohsin SK. Molecular markers in invasive breast cancer. In: O’Malley FP, Pinder SE, Mulligan AM, editors. Breast pathology. Philadelphia, PA: Elsevier; 2006. p. 267.Google Scholar
  58. 58.
    Köninki K, Tanner M, Auvinen A, Isola J. HER2 positive breast cancer: decreasing proportion but stable incidence in Finnish population from 1982 to 2005. Breast Cancer Res. 2009;11:R37.CrossRefGoogle Scholar
  59. 59.
    Ménard S, Fortis S, Castiglioni F, Agresti R, Balsari A. HER2 as a prognostic factor in breast cancer. Oncology. 2001;61(Suppl 2):67–72.CrossRefGoogle Scholar
  60. 60.
    Wolff AC, Hammond EH, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer. American Society of Clinical Oncologu/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.CrossRefGoogle Scholar
  61. 61.
    Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies – improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26(8):1533–46.CrossRefGoogle Scholar
  62. 62.
    Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst. 2011;103:1656–64.CrossRefGoogle Scholar
  63. 63.
    Denkert C, Liobl S, Müller BM, Eidtmann H, Schmitt WD, Eiermann W, et al. Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant GeparTrio trial. Ann Oncol. 2013;24:2786–93.CrossRefGoogle Scholar
  64. 64.
    Denkert C, Budczies J, von Minckwitz G, Wienert S, Loibl S, Klauschen F. Developing Ki67 as a useful marker. Breast. 2015;24(Suppl 2):S67–72.CrossRefGoogle Scholar
  65. 65.
    Polley MY, Leung SC, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JM, et al. An international study to increase concordance in Ki67 scoring. Mod Pathol. 2015;28(6):778–86.CrossRefGoogle Scholar
  66. 66.
    Boros M, Moncea D, Moldovan C, Podoleanu C, Georgescu R, Stolnicu S. Intratumoral heterogeneity for Ki-67 index in invasive breast carcinomas: a study on 131 consecutive cases. Appl Immunohistochem Mol Morphol. 2017;25(5):338–40.CrossRefGoogle Scholar
  67. 67.
    van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.CrossRefGoogle Scholar
  68. 68.
    Zujewski JA, Kamin L. Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. Future Oncol. 2008;4(5):603–10.CrossRefGoogle Scholar
  69. 69.
    McVeigh TP, Hughes LM, Miller N, Sheehan M, Keane M, Sweeney KJ, et al. The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral center. Eur J Cancer. 2014;50(16):2763–70.CrossRefGoogle Scholar
  70. 70.
    Aalders KC, Kuijer A, Straver ME, Slaets L, Litiere S, Viale G, et al. Characterisation of multifocal breast cancer using the 70-gene signature in clinical low-risk patients enrolled in the EORTC 10041/BIG 03-04 MINDACT trial. Eur J Cancer. 2017;79:98–1.CrossRefGoogle Scholar
  71. 71.
    Cardoso F, Piccart-Gebhart M, Van’t Veer L, Rutgers E, TRANSBIG Consortium. The MINDACT trial: the first prospective clinical validation of a genomic tool. Mol Oncol. 2007;1(3):246–51.CrossRefGoogle Scholar
  72. 72.
    Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol. 2008;26(5):729–35.CrossRefGoogle Scholar
  73. 73.
    Mook S, Van’t Veer L, Rutgers EJ, Piccart-Gebhart MJ, Cardoso F. Individualization of therapy using mammaprint: from development to the MINDACT trial. Cancer Genomics Proteomics. 2007;4(3):147–55.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Simona Stolnicu
    • 1
  1. 1.Department of PathologyUniversity of Medicine and PharmacyTîrgu MureșRomania

Personalised recommendations