Advertisement

The Role of Immunohistochemistry in Breast Pathology

  • Syed A. Hoda
Chapter

Abstract

The current practice of breast pathology is virtually unthinkable without the use of immunohistochemistry (IHC) [1, 2]. However, this indispensable diagnostic technique is burdened by numerous issues. This chapter is intended to outline the main uses of IHC in breast pathology. Furthermore, the problems and pitfalls inherent in the use of this technique are briefly discussed. Some common histopathological dilemmas—including usual versus atypical hyperplasia, benign versus malignant papillary lesions, and pseudoinvasive versus microinvasive carcinoma, etc. are considered. Also, issues relating to sentinel lymph node assessment, “surrogate” molecular classification, and workup of metastatic carcinomas in breast are briefly discussed. The role of immunostaining in assessing prognostic and predictive markers (including ER and HER2) of breast carcinoma are also concisely reviewed.

Keywords

Breast Carcinoma Diagnosis Differential diagnosis Immunohistochemistry 

References

  1. 1.
    Yeh IT, Mies C. Application of immunohistochemistry to breast lesions. Arch Pathol Lab Med. 2008;132:349–58.PubMedGoogle Scholar
  2. 2.
    Moriya T, Kozuka Y, Kanomata N, Tse GM, Tan PH. The role of immunohistochemistry in the differential diagnosis of breast lesions. Pathology. 2009;41:68–76.CrossRefGoogle Scholar
  3. 3.
    Gown AM. Diagnostic immunohistochemistry: what can go wrong and how to prevent it. Arch Pathol Lab Med. 2016;140:893–8.CrossRefGoogle Scholar
  4. 4.
    Hoda SA, Rosen PP. Contemporaneous H&E sections should be standard practice in diagnostic immunopathology. Am J Surg Pathol. 2007;31:1627.CrossRefGoogle Scholar
  5. 5.
    Cserni G. Lack of myoepithelium in apocrine glands of the breast does not necessarily imply malignancy. Histopathology. 2008;52:253–5.CrossRefGoogle Scholar
  6. 6.
    Tramm T, Kim JY, Tavassoli FA. Diminished number or complete loss of myoepithelial cells associated with metaplastic and neoplastic apocrine lesions of the breast. Am J Surg Pathol. 2011;35:202–11.CrossRefGoogle Scholar
  7. 7.
    Geyer FC, Berman SH, Marchiò C, Burke KA, Guerini-Rocco E, Piscuoglio S, et al. Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family. Mod Pathol. 2017;30:69–84.CrossRefGoogle Scholar
  8. 8.
    Gatalica Z. Immunohistochemical analysis of apocrine breast lesions. Consistent over-expression of androgen receptor accompanied by the loss of estrogen and progesterone receptors in apocrine metaplasia and apocrine carcinoma in situ. Pathol Res Pract. 1997;193:753–8.CrossRefGoogle Scholar
  9. 9.
    Mills AM, Gottlieb EC, Wendroth MS, Brenin MC, Atkins KA. Pure apocrine carcinomas represent a clinicopathologically distinct androgen receptor-positive subset of triple-negative breast cancers. Am J Surg Pathol. 2016;40:1109–16.CrossRefGoogle Scholar
  10. 10.
    Nofech-Mozes S, Holloway C, Hanna W. The role of cytokeratin 5/6 as an adjunct diagnostic tool in breast core needle biopsies. Int J Surg Pathol. 2008;16:399–406.CrossRefGoogle Scholar
  11. 11.
    Lee AH. Use of immunohistochemistry in the diagnosis of problematic breast lesions. J Clin Pathol. 2013;66:471–7.CrossRefGoogle Scholar
  12. 12.
    Khazai L, Rosa M. Use of Immunohistochemical stains in epithelial lesions of the breast. Cancer Control. 2015;22:220–5.CrossRefGoogle Scholar
  13. 13.
    Canas-Marques R, Schnitt SJ. E-cadherin immunohistochemistry in breast pathology: uses and pitfalls. Histopathology. 2016;68:57–69.CrossRefGoogle Scholar
  14. 14.
    Butler D, Rosa M. Pleomorphic lobular carcinoma of the breast: a morphologically and clinically distinct variant of lobular carcinoma. Arch Pathol Lab Med. 2013;137:1688–92.CrossRefGoogle Scholar
  15. 15.
    Eisenberg RE, Hoda SA. Lobular carcinoma in situ with collagenous spherulosis: clinicopathologic characteristics of 38 cases. Breast J. 2014;20:440–1.CrossRefGoogle Scholar
  16. 16.
    Jorns JM. Papillary lesions of the breast: a practical approach to diagnosis. Arch Pathol Lab Med. 2016;140:1052–9.CrossRefGoogle Scholar
  17. 17.
    Tse GM, Tan PH, Moriya T. The role of immunohistochemistry in the differential diagnosis of papillary lesions of the breast. J Clin Pathol. 2009;62:407–13.CrossRefGoogle Scholar
  18. 18.
    Wynveen CA, Nehhozina T, Akram M, Hassan M, Norton L, Van Zee KJ, et al. Intracystic papillary carcinoma of the breast: an in situ or invasive tumor? Results of immunohistochemical analysis and clinical follow-up. Am J Surg Pathol. 2011;35:1–14.CrossRefGoogle Scholar
  19. 19.
    Rakha EA, Tun M, Junainah E, Ellis IO, Green A. Encapsulated papillary carcinoma of the breast: a study of invasion associated markers. J Clin Pathol. 2012;65:710–4.CrossRefGoogle Scholar
  20. 20.
    Hilson JB, Schnitt SJ, Collins LC. Phenotypic alterations in myoepithelial cells associated with benign sclerosing lesions of the breast. Am J Surg Pathol. 2010;34:896–900.CrossRefGoogle Scholar
  21. 21.
    Cheng E, D'Alfonso TM, Arafah M, Marrero Rolon R, Ginter PS, Hoda SA. Subareolar sclerosing ductal hyperplasia. Int J Surg Pathol. 2017;25:4–11.CrossRefGoogle Scholar
  22. 22.
    Ozerdem U, Swistel A, Antonio LB, Hoda SA. Invasive Paget disease of the nipple: a brief review of the literature and report of the first case with axillary nodal metastases. Int J Surg Pathol. 2014;22:566–9.CrossRefGoogle Scholar
  23. 23.
    Liegl B, Leibl S, Gogg-Kamerer M, Tessaro B, Horn LC, Moinfar F. Mammary and extramammary Paget’s disease: an immunohistochemical study of 83 cases. Histopathology. 2007;50:439–47.CrossRefGoogle Scholar
  24. 24.
    Park S, Suh YL. Useful immunohistochemical markers for distinguishing Paget cells from Toker cells. Pathology. 2009;41:640–4.CrossRefGoogle Scholar
  25. 25.
    Ross DS, Hoda SA. Microinvasive (T1mic) lobular carcinoma of the breast: clinicopathologic profile of 16 cases. Am J Surg Pathol. 2011;35:750–6.CrossRefGoogle Scholar
  26. 26.
    Rakha EA, Aleskandarany MA, Lee AH, Ellis IO. An approach to the diagnosis of spindle cell lesions of the breast. Histopathology. 2016;68:33–44.CrossRefGoogle Scholar
  27. 27.
    Chia Y, Thike AA, Cheok PY, Yong-Zheng Chong L, Man-Kit Tse G, Tan PH. Stromal keratin expression in phyllodes tumours of the breast: a comparison with other spindle cell breast lesions. J Clin Pathol. 2012;65:339–47.CrossRefGoogle Scholar
  28. 28.
    Cimino-Mathews A, Sharma R, Illei PB, Vang R, Argani P. A subset of malignant phyllodes tumors express p63 and p40: a diagnostic pitfall in breast core needle biopsies. Am J Surg Pathol. 2014;38:1689–96.CrossRefGoogle Scholar
  29. 29.
    Arafah MA, Ginter PS, D'Alfonso TM, Hoda SA. Epithelioid mammary myofibroblastoma mimicking invasive lobular carcinoma. Int J Surg Pathol. 2015;23:284–8.CrossRefGoogle Scholar
  30. 30.
    Hoda SA, Hoda RS, Merlin S, Shamonki J, Rivera M. Issues relating to lymphovascular invasion in breast carcinoma. Adv Anat Pathol. 2006;13:308–15.CrossRefGoogle Scholar
  31. 31.
    Rosen PP. Tumor emboli in intramammary lymphatics in breast carcinoma: pathologic criteria for diagnosis and clinical significance. Pathol Annu. 1983;18(Pt 2):215–32.PubMedGoogle Scholar
  32. 32.
    Patton KT, Deyrup AT, Weiss SW. Atypical vascular lesions after surgery and radiation of the breast: a clinicopathologic study of 32 cases analyzing histologic heterogeneity and association with angiosarcoma. Am J Surg Pathol. 2008;32:943–50.CrossRefGoogle Scholar
  33. 33.
    Rabban JT, Chen YY. D2–40 expression by breast myoepithelium: potential pitfalls in distinguishing intralymphatic carcinoma from in situ carcinoma. Hum Pathol. 2008;39:175–83.CrossRefGoogle Scholar
  34. 34.
    Rivera M, Merlin S, Hoda RS, Gopalan A, Hoda SA. Controversies in surgical pathology: minimal involvement of sentinel lymph node in breast carcinoma: prevailing concepts and challenging problems. Int J Surg Pathol. 2004;12:301–6.CrossRefGoogle Scholar
  35. 35.
    Hoda SA, Chiu A, Resetkova E, Harigopal M, Hoda RS, Osborne MP. Pathological examination of sentinel lymph node in breast cancer: potential problems and possible solutions. Microsc Res Tech. 2002;59:85–91.CrossRefGoogle Scholar
  36. 36.
    Ozerdem U, Hoda SA. Endosalpingiosis of axillary sentinel lymph node: a mimic of metastatic breast carcinoma. Breast J. 2015;21:194–5.CrossRefGoogle Scholar
  37. 37.
    Robinson BD, Amin BD, Hoda SA. Alternaria simulating metastatic breast carcinoma in cytokeratin-stained axillary sentinel node sections. Breast J. 2008;14:120–1.CrossRefGoogle Scholar
  38. 38.
    Scognamiglio T, Hoda RS, Edgar MA, Hoda SA. The need for vigilance in the pathologic evaluation of sentinel lymph nodes: a report of two illustrative cases. Breast J. 2003;9:420–2.CrossRefGoogle Scholar
  39. 39.
    Hoda SA, Resetkova E, Yusuf Y, Cahan A, Rosen PP. Megakaryocytes mimicking metastatic breast carcinoma. Arch Pathol Lab Med. 2002;126:618–20.PubMedGoogle Scholar
  40. 40.
    Chiu A, Hoda RS, Hoda SA. Pseudomicrometastasis in sentinel lymph node-multinucleated macrophage mimicking micrometastasis. Breast J. 2001;7:440–1.CrossRefGoogle Scholar
  41. 41.
    Chiu A, Hoda SA, Yao DX, Rosen PP. A potential source of false-positive sentinel nodes: immunostain misadventure. Arch Pathol Lab Med. 2001;125:1497–9.PubMedGoogle Scholar
  42. 42.
    DeLair DF, Corben AD, Catalano JP, Vallejo CE, Brogi E, Tan LK. Non-mammary metastases to the breast and axilla: a study of 85 cases. Mod Pathol. 2013;26:343–9.CrossRefGoogle Scholar
  43. 43.
    Lee AH. The histological diagnosis of metastases to the breast from extramammary malignancies. J Clin Pathol. 2007;60:1333–41.CrossRefGoogle Scholar
  44. 44.
    Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38:13–22.CrossRefGoogle Scholar
  45. 45.
    Hoda S, Rao R, Hoda RS. Breast implant-associated anaplastic large cell lymphoma. Int J Surg Pathol. 2015;23:209–10.CrossRefGoogle Scholar
  46. 46.
    Fitzgibbons PL, Dillon DA, Alsabeh R, Berman MA, Hayes DF, Hicks DG, et al. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the breast. Arch Pathol Lab Med. 2014;138:595–601.CrossRefGoogle Scholar
  47. 47.
    Yi M, Huo L, Koenig KB, Mittendorf EA, Meric-Bernstam F, Kuerer HM, et al. Which threshold for ER positivity? a retrospective study based on 9639 patients. Ann Oncol. 2014;25:1004–11.CrossRefGoogle Scholar
  48. 48.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.CrossRefGoogle Scholar
  49. 49.
    Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24(Suppl 2):S26–35.CrossRefGoogle Scholar
  50. 50.
    Leidy J, Khan A, Kandil D. Basal-like breast cancer: update on clinicopathologic, immunohistochemical, and molecular features. Arch Pathol Lab Med. 2014;138:37–43.CrossRefGoogle Scholar
  51. 51.
    Vasconcelos I, Hussainzada A, Berger S, Fietze E, Linke J, Siedentopf F, et al. The St. Gallen surrogate classification for breast cancer subtypes successfully predicts tumor presenting features, nodal involvement, recurrence patterns and disease free survival. Breast. 2016;29:181–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.New York Presbyterian Hospital-Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations