Advertisement

The Mathematical Mind

  • Marcel Danesi
Chapter
Part of the Mathematics in Mind book series (MATHMIN)

Abstract

As argued throughout this book, puzzles have played as much a role as any other human artifact, mental tool, or device in human history as sparks for discovery. The Ahmes Papyrus is more than a source of ancient mathematics. It is the first text to show, rather conspicuously, that puzzles and mathematics have a common origin. As mentioned, each puzzle in the work is both a creative (dialectic) conundrum and a mini-treatise in mathematical thinking. This has been called “Ahmes’ legacy” in this book, which claims above all else that puzzles are mirrors of the inner workings of the mathematical mind. The classic puzzles of Ahmes, Alcuin, Fibonacci, Euler, Cardano, Lucas, Carroll, and many others are miniature models of that mind, showing how the flow of thought goes from experience, to imaginative hunches, and then on to a solution. Once the mathematical archetype is extracted from the solution via generalization, the puzzle becomes a kind of intellectual meme that makes its way into other mathematical minds to suggest new ways of doing mathematics. Mathematical cognition can thus be characterized as a blended form of imaginative-reflective thinking (Poe’s bi-part soul) that is sparked by the imagination’s interpretation of experiences via their serendipitous connectivity. This view is consistent with the neuroscientific work being conducted in so-called blending theory today (Fauconnier and Turner 2002, Danesi 2016), whereby the brain is seen as an organ that connects imaginative thoughts with each other in order to produce a new unit of thought. In effect, the meaning of something is not in its individual parts, but in the way they are connected or combined.

References

  1. Abbott, Edwin (2002 [1884]). The Annotated Flatland: A Romance of Many Dimensions. Introduction and Notes by Ian Stewart. New York: Basic Books.Google Scholar
  2. Adam, John A. (2004). Mathematics in Nature: Modeling Patterns in the Natural World. Princeton: Princeton University Press.Google Scholar
  3. Alexander, James (2012). On the Cognitive and Semiotic Structure of Mathematics. In: M. Bockarova, M. Danesi, and R. Núñez (eds.), Semiotic and Cognitive Science Essays on the Nature of Mathematics, pp. 1–34. Munich: Lincom Europa.Google Scholar
  4. Al-Khalili, Jim (2012). Paradox: The Nine Greatest Enigmas in Physics. New York: Broadway.Google Scholar
  5. Andrews, William S. (1960). Magic Squares and Cubes. New York: Dover.zbMATHGoogle Scholar
  6. Auble, Pamela, Franks, Jeffrey and Soraci, Salvatore (1979). Effort Toward Comprehension: Elaboration or Aha !?Memory & Cognition 7: 426–434.CrossRefGoogle Scholar
  7. Ascher, Marcia (1990). A River-Crossing Problem in Cross-Cultural Perspective. Mathematics Magazine 63: 26–29.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Averbach, Bonnie and Chein, Orin (1980). Problem Solving Through Recreational Mathematics. New York: Dover.zbMATHGoogle Scholar
  9. Bachet, Claude-Gaspar (1984). Problèmes plaisans et délectables qui se font par les nombres. Lyon: Gauthier-Villars.Google Scholar
  10. Ball, W. W. Rouse (1972). Mathematical Recreations and Essays, 12th edition, revised by H. S. M. Coxeter. Toronto: University of Toronto Press.Google Scholar
  11. Banks, Robert S. (1999). Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics. Princeton: Princeton University Press.zbMATHGoogle Scholar
  12. Barwise, Jon and Etchemendy, John (1986). The Liar. Oxford: Oxford University Press.zbMATHGoogle Scholar
  13. Bashmakova, Isabella G. (1997). Diophantus and Diophantine Equations. Washington, D.C.: Mathematical Association of America.zbMATHGoogle Scholar
  14. Basin, S. L. (1963). The Fibonacci Sequence as It Appears in Nature. The Fibonacci Quarterly, 1 (1963), 53–64.zbMATHGoogle Scholar
  15. Benjamin, Arthur, Chartrand, Gary, and Zhang, Ping (2015). The Fascinating World of Graph Theory. Princeton: Princeton University Press.zbMATHCrossRefGoogle Scholar
  16. Benson, Donald C. (1999). The Moment of Proof: Mathematical Epiphanies. Oxford: Oxford University Press.zbMATHGoogle Scholar
  17. Bennett, G. T. (1910). The Eight Queens Problem. Messenger of Mathematics 39: 19.Google Scholar
  18. Bergin, Thomas G. and Fisch, Max (eds. and trans.) (1984). The New Science of Giambattista Vico. Ithaca: Cornell University Press.Google Scholar
  19. Berlinski, David (2013). The King of Infinite Space: Euclid and His Elements. New York: Basic Books.Google Scholar
  20. Biggs, N. L. (1979). The Roots of Combinatorics. Historia Mathematica 6: 109-136.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Bohning, Gerry and Althouse, Jody K. (1997). Using Tangrams to Teach Geometry to Young Children. Early Childhood Education Journal 24: 239–242.CrossRefGoogle Scholar
  22. Bor, Daniel (2012). The Ravenous Brain: How the New Science of Consciousness Explains Our Insatiable Search for Meaning. New York: Basic Books.Google Scholar
  23. Borovkov, Alexander A. (2013). Probability Theory. New York: Springer.zbMATHCrossRefGoogle Scholar
  24. Bronowski, Jacob (1973). The Ascent of Man. Boston: Little, Brown, and Co.Google Scholar
  25. Bronowski, Jacob (1977). The Ascent of Man. Boston: Little, Brown, and Co.Google Scholar
  26. Brooke, Maxey (1969). 150 Puzzles in Crypt-Arithmetic. New York: Dover.Google Scholar
  27. Bruno, Giuseppe, Genovese, Andrea, and Improta, Gennaro (2013). Routing Problems: A Historical Perspective. In: M. Pitici (ed.), The Best Writing in Mathematics 2012. Princeton: Princeton University Press.Google Scholar
  28. Burkholder, Peter (1993). Alcuin of York’s Propositiones ad acuendos juvenes: Introduction, Commentary & Translation. History of Science & Technology Bulletin, Vol. 1, number 2.Google Scholar
  29. Butterworth, Brian (1999). What Counts: How Every Brain is Hardwired for Math. Michigan: Free Press.zbMATHGoogle Scholar
  30. Cantor, Georg (1874). Über eine Eigneschaft des Inbegriffes aller reelen algebraischen Zahlen. Journal für die Reine und Angewandte Mathematik 77: 258–262.Google Scholar
  31. Cardano, Girolamo (1663 [1961]). The Book on Games of Chance (Liber de ludo aleae). New York: Holt, Rinehart, and Winston.zbMATHGoogle Scholar
  32. Carl Sagan (1985). Contact. New York: Pocket Books.Google Scholar
  33. Carroll, Lewis (1860). A Syllabus of Plane Algebraical Geometry. Oxford University Notes.Google Scholar
  34. Carroll, Lewis (1879). Euclid and His Modern Rivals. London: Macmillan.zbMATHGoogle Scholar
  35. Carroll, Lewis (1880). Pillow Problems and a Tangled Tale. New York: Dover.Google Scholar
  36. Carroll, Lewis (1958a). The Game of Logic. New York: Dover.Google Scholar
  37. Carroll, Lewis (1958b). Mathematical Recreations of Lewis Carroll. New York: Dover.Google Scholar
  38. Cayley, Arthur (1854). On the Theory of Groups, as Depending on the Symbolic Equation θn = 1. Philosophical Magazine 7: 40–47Google Scholar
  39. Chaitin, Gregory J. (2006). Meta Math. New York: Vintage.zbMATHGoogle Scholar
  40. Changeux, Pierre (2013). The Good, the True, and the Beautiful: A Neuronal Approach. New Haven: Yale University Press.Google Scholar
  41. Chase, Arnold B. (1979). The Rhind Mathematical Papyrus: Free Translation and Commentary with Selected Photographs, Transcriptions, Transliterations and Literal Translations. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  42. Clark, Michael (2012). Paradoxes from A to Z. London: Routledge.Google Scholar
  43. Conrad, Axel, Hindrichs, Tanja, Morsy, Hussein, and Wegener, Ingo (1994). Solution of the Knight’s Hamiltonian Path Problem on Chessboards. Discrete Applied Mathematics 50: 125–134.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Conway, John Horton (2000). On Numbers and Games. Natick, Mass.: A. K. Peters.Google Scholar
  45. Cook, William J. (2014). In Pursuit of the Traveling Salesman Problem. Princeton: Princeton University Press.zbMATHGoogle Scholar
  46. Costello, Matthew J. (1988). The Greatest Puzzles of All Time. New York: Dover.Google Scholar
  47. Crilly, Tony (2011). Mathematics. London: Quercus.zbMATHGoogle Scholar
  48. Cutler, Bill (2003). Solution to Archimedes’ Loculus. http://www.billcutlerpuzzles.com.
  49. Dalgety, James and Hordern, Edward (1999). Classification of Mechanical Puzzles and Physical Objects Related to Puzzles. In: Elwyn Berlekamp and Tom Rodgers (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 175–186. Natick, Mass.: A. K. Peters.Google Scholar
  50. Danesi, Marcel (2002). The Puzzle Instinct: The Meaning of Puzzles in Human Life. Bloomington: Indiana University Press.Google Scholar
  51. Danesi, Marcel (2003). Second Language Teaching: A View from the Right Side of the Brain. Dordrecht: Kluwer.CrossRefGoogle Scholar
  52. Danesi, Marcel (2016). Language and Mathematics: In Interdisciplinary Guide. Berlin: Mouton de Gruyter.zbMATHCrossRefGoogle Scholar
  53. Danforth, Samuel (1647). MDCXLVII, an Almanac for the Year of Our Lord 1647. ProQuest 2011.Google Scholar
  54. Darling, David (2004). The Universal Book of Mathematics: From Abracadabra to Zeno’s Paradoxes. New York: John Wiley and Sons.De Bono, Edward (1970). Lateral Thinking: Creativity Step-by-Step. New York: Harper & Row.Google Scholar
  55. Davis, Paul J. and Hersh, Reuben (1986). Descartes’ Dream: The World according to Mathematics. Boston: Houghton Mifflin.zbMATHGoogle Scholar
  56. Dawkins, Richard (1976). The Selfish Gene. Oxford: Oxford University Press.Google Scholar
  57. De Bono, Edward (1970). Lateral Thinking: Creativity Step-by-Step. New York: Harper & Row.Google Scholar
  58. De Grazia, Joseph (1981). Math Tricks, Brain Twisters & Puzzles. New York: Bell Publishing Company.Google Scholar
  59. Dehaene, Stanislas (1997). The Number Sense: How the Mind Creates Mathematics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  60. Dehaene, Stanislas (2014). Consciousness and the Brain. New York: Penguin Books.Google Scholar
  61. De Morgan, Augustus (1872). A Budget of Paradoxes. Library of Alexandria.Google Scholar
  62. Derbyshire, John (2004). Prime Obsession: Bernhard Riemann and His Greatest Unsolved Problem in Mathematics. Washington: Joseph Henry Press.zbMATHGoogle Scholar
  63. Devlin, Keith (2000). The Math Gene: How Mathematical Thinking Evolved and Why Numbers Are Like Gossip. New York: Basic.zbMATHGoogle Scholar
  64. Devlin, Keith (2005). The Math Instinct. New York: Thunder’s Mouth Press.Google Scholar
  65. Devlin, Keith (2011). The Man of Numbers: Fibonacci’s Arithmetic Revolution. New York: Walker and Company.zbMATHGoogle Scholar
  66. Dorrie, Heinrich (1965). 100 Great Problems in Elementary Mathematics. New York: Dover.Google Scholar
  67. Dudeney, Henry E. (1917). Amusements in Mathematics. New York: Dover.Google Scholar
  68. Dudeney, Henry E. (1958). The Canterbury Puzzles and Other Curious Problems. New York: Dover.Google Scholar
  69. Dudeney, Henry E. (2016, reprint). 536 Puzzles and Curious Problems. New York: Dover.Google Scholar
  70. Dunlap, Richard A. (1997). The Golden Ratio and Fibonacci Numbers. Singapore: World Scientific.zbMATHCrossRefGoogle Scholar
  71. Du Sautoy, Marcus (2004). The Music of the Primes: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: HarperCollins.Google Scholar
  72. Eco, Umberto (1983). The Name of the Rose New York: Picador.Google Scholar
  73. Eco, Umberto (1989). The Open Work. Cambridge: Harvard University Press.zbMATHGoogle Scholar
  74. Eco, Umberto (1998). Serendipities: Language and Lunacy, translated by William Weaver. New York: Columbia University Press.CrossRefGoogle Scholar
  75. Elwes, Richard (2014). Mathematics 1001. Buffalo: Firefly.Google Scholar
  76. Erdös, Paul (1934). A Theorem of Sylvester and Schur. Journal of the London Mathematical Society 9: 282–288.MathSciNetzbMATHCrossRefGoogle Scholar
  77. Euclid (1956). The Thirteen Books of Euclid’s Elements, 3 Volumes. New York: Dover.zbMATHGoogle Scholar
  78. Fauconnier, Gilles and Turner, Mark (2002). The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. New York: Basic.Google Scholar
  79. Fibonacci, Leonardo (2002). Liber Abaci, trans. by L. E. Sigler. New York: Springer.zbMATHGoogle Scholar
  80. Flood, Robert and Wilson, Raymond (2011). The Great Mathematicians: Unravelling the Mysteries of the Universe. London: Arcturus.Google Scholar
  81. Fortnow, Lance (2013). The Golden Ticket: P, NP, and the Search for the Impossible. Princeton: Princeton University Press.zbMATHCrossRefGoogle Scholar
  82. Foulds, L. R. and Johnston, D. G. (1984). An Application of Graph Theory and Integer Programming: Chessboard Non-Attacking Puzzles. Mathematics Magazine 57: 95–104.MathSciNetzbMATHCrossRefGoogle Scholar
  83. Frege, Gottlob (1879). Begiffsschrift eine der Aritmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert.Google Scholar
  84. Freiberger, Marianne (2006). Flatland: A Review. Plus, https://plus.maths.org/content/flatland.Google Scholar
  85. Frey, Alexander H. and Singmaster, David (1982). Handbook of Cubic Math. Hillside, N.J.: Enslow.zbMATHGoogle Scholar
  86. Gale, David (1979). The Game of Hex and Brouwer Fixed-Point Theorem. The American Mathematical Monthly 86: 818–827.MathSciNetzbMATHCrossRefGoogle Scholar
  87. Gardner, Martin (1970). The Fantastic Combinations of John Conway’s New Solitaire Game “Life”. Scientific American 223: 120–123.CrossRefGoogle Scholar
  88. Gardner, Martin (1979a). Chess Problems on a Higher Plane, Including Images, Rotations and the Superqueen. Scientific American 240: 18–22.CrossRefGoogle Scholar
  89. Gardner, Martin (1979b). Aha! Insight! New York: Scientific American.Google Scholar
  90. Gardner, Martin (1982). Gotcha! Paradoxes to Puzzle and Delight. San Francisco: Freeman.Google Scholar
  91. Gardner, Martin (1994). My Best Mathematical and Logic Puzzles. New York: Dover.zbMATHGoogle Scholar
  92. Gardner, Martin (1997). The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. New York: Copernicus.zbMATHCrossRefGoogle Scholar
  93. Gardner, Martin (1998). A Quarter-Century of Recreational Mathematics. Scientific American 279: 68–75.CrossRefGoogle Scholar
  94. Gerdes, Paulus (1994). On Mathematics in the History of Sub-Saharan Africa,” Historia Mathematica 21: 23–45.MathSciNetzbMATHCrossRefGoogle Scholar
  95. Gessen, Masha (2009). Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century. Boston: Houghton Mifflin Harcourt.zbMATHGoogle Scholar
  96. Gillings, Richard J. (1961). Think-of-a-Number: Problems 28 and 29 of the Rhind Mathematical Papyrus. The Mathematics Teacher 54: 97–102.Google Scholar
  97. Gillings, Richard J. (1962). Problems 1 to 6 of the Rhind Mathematical Papyrus. The Mathematics Teacher 55: 61–65.Google Scholar
  98. Gillings, Richard J. (1972). Mathematics in the Time of the Pharaohs. Cambridge, Mass.: MIT Press.zbMATHGoogle Scholar
  99. Gödel, Kurt (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Teil I. Monatshefte für Mathematik und Physik 38: 173-189.MathSciNetzbMATHCrossRefGoogle Scholar
  100. Goldberg, E. and Costa, L. D. (1981). Hemispheric Differences in the Acquisition of Descriptive Systems. Brain and Language 14: 144–173.CrossRefGoogle Scholar
  101. Gosset, T. (1914). The Eight Queens Problem. Messenger of Mathematics 44: 48.zbMATHGoogle Scholar
  102. Hadley, John and Singmaster, David (1992). Problems to Sharpen the Young. Mathematics Gazette 76: 102–126.CrossRefGoogle Scholar
  103. Haken, Wolfgang (1977). Every Planar Map Is Four-Colorable. Illinois Journal of Mathematics 21: 429–567.MathSciNetzbMATHGoogle Scholar
  104. Haken, Wolfgang and Appel, Kenneth (1977). The Solution of the Four-Color-Map Problem. Scientific American 237: 108–121.MathSciNetGoogle Scholar
  105. Haken, Wolfgang and Appel, Kenneth (2002). The Four-Color Problem. In: D. Jacquette (ed.), Philosophy of Mathematics, pp. 193-208. Oxford: Blackwell.Google Scholar
  106. Hales, Thomas C. (1994). The Status of the Kepler Conjecture. The Mathematical Intelligencer 16: 47–58.MathSciNetzbMATHCrossRefGoogle Scholar
  107. Hales, Thomas C. (2000). Cannonballs and Honeycombs. Notices of the American Mathematical Society 47: 440-449.MathSciNetzbMATHGoogle Scholar
  108. Hales, Thomas C. (2005). A Proof of the Kepler Conjecture. Annals of Mathematics. Second Series 62: 1065–1185.zbMATHCrossRefGoogle Scholar
  109. Hales, Thomas C. and Ferguson, Samuel P. (2006). A Formulation of the Kepler Conjecture. Discrete & Computational Geometry 36: 21–69.MathSciNetzbMATHCrossRefGoogle Scholar
  110. Hales, Thomas C. and Ferguson, Samuel P. (2011). The Kepler Conjecture: The Hales-Ferguson Proof. New York: Springer.Google Scholar
  111. Hannas, Linda (1972). The English Jigsaw Puzzle, 1760–1890. London: Wayland.Google Scholar
  112. Hannas, Linda (1981). The Jigsaw Book: Celebrating Two Centuries of Jigsaw-Puzzling Round the World. New York: Dial.Google Scholar
  113. Hayan Ayaz, Izzetoglu, Meltem, Shewokis, Patricia, and Onaral, Banu (2012). Tangram Solved? Prefrontal Cortex Activation Analysis during Geometric Problem Solving. IEEE Conference Proceedings: 4724–4727.Google Scholar
  114. Heath, Thomas L. (1958). The Works of Archimedes with the Method of Archimedes. New York: Dover.zbMATHGoogle Scholar
  115. Hellman, Hal (2006). Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever. Hoboken: John Wiley.zbMATHGoogle Scholar
  116. Hersh, Reuben (1998). What Is Mathematics, Really? Oxford: Oxford University Press.zbMATHGoogle Scholar
  117. Hersh, Reuben (2014). Experiencing Mathematics. Washington, DC: American Mathematical Society.zbMATHGoogle Scholar
  118. Hesse, Hermann (1943). Magister Ludi (New York: Bantam).Google Scholar
  119. van Hiele, Pierre M. (1984). The Child’s Thought and Geometry. In: David Fuys, Dorothy Geddes, and Rosamond Tischler (eds.), English Translations of Selected Writings of Dina van Hiele-Geldof and P. M. van Hiele, pp. 243–252. Brooklyn: Brooklyn College of Education.Google Scholar
  120. Hilbert, David (1931). Die Grundlagen Der Elementaren Zahlentheorie. Mathematische Annalen 104: 485–494.MathSciNetzbMATHCrossRefGoogle Scholar
  121. Hinz, Andreas M., Klavzar, Sandi, Milutinovic, Uros, and Petr, Ciril (2013). The Tower of Hanoi: Myths and Maths. Basel: Birkhaüser.zbMATHCrossRefGoogle Scholar
  122. Hofstadter, Douglas (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books.zbMATHGoogle Scholar
  123. Hofstadter, Douglas and Sander, Emmanuel (2013). Surfaces and Essences: Analogy as the Fuel and Fire of Thinking. New York: Basic Books.Google Scholar
  124. Hooper, William (1782). Rational Recreations. London: L. Davis.Google Scholar
  125. Hovanec, Helene (1978). The Puzzlers’ Paradise: From the Garden of Eden to the Computer Age. New York: Paddington Press.Google Scholar
  126. Hudson, Derek (1954). Lewis Carroll: An Illustrated Biography. London: Constable.Google Scholar
  127. Huizinga, Johan (1938). Homo Ludens: A Study of the Play-Element in Human Culture. New York: Beacon Press.Google Scholar
  128. Hunter, J. A. H. (1965). Fun with Figures. New York: Dover.Google Scholar
  129. Isacoff, Stuart (2003). Temperament: How Music Became a Battleground for the Great Minds of Western Civilization. New York: Knopf.Google Scholar
  130. Izard, Veronique, Pica, Pierre, Pelke, Elizabeth S., and Dehaene, Stephen (2011). Flexible Intuitions of Euclidean geometry in an Amazonian Indigene Group. PNAS 108: 9782–9787.CrossRefGoogle Scholar
  131. Jung, Carl G. (1983). The Essential Jung. Princeton: Princeton University Press.Google Scholar
  132. Kant, Immanuel (2011 [1910]). Critique of Pure Reason, trans. J. M. D. Meiklejohn. CreateSpace Platform.Google Scholar
  133. Kasner, Edward and Newman, James R. (1940). Mathematics and the Imagination. New York: Simon and Schuster.Google Scholar
  134. Kershaw, Trina and Ohlsson, Stellan (2004). Multiple Causes of Difficulty in Insight: The Case of the Nine-Dot Problem. Journal of Experimental Psychology: Learning, Memory, and Cognition 30: 3–13.Google Scholar
  135. Kim, Scott (2016). What Is a Puzzle? scottkim.com.previewc40.carrierzone.com/thinkinggames/whatisapuzzle.
  136. Klarner, David A. (1967). Cell Growth Problems. Canadian Journal of Mathematics 19: 851-863.MathSciNetzbMATHCrossRefGoogle Scholar
  137. Klarner, David A. (ed.) (1981). Mathematical Recreations: A Collection in Honor of Martin Gardner. New York: Dover.zbMATHGoogle Scholar
  138. Kline, Morris (1985). Mathematics and the Search for Knowledge. Oxford: Oxford University Press.zbMATHGoogle Scholar
  139. Knuth, Donald E. (1974). Surreal Numbers. Boston: Addison-Wesley.zbMATHGoogle Scholar
  140. Kosslyn, Stephen M. (1983). Ghosts in the Mind’s Machine: Creating and Using Images in the Brain. New York: W. W. Norton.Google Scholar
  141. Kosslyn, Stephen M. (1994). Image and Brain. Cambridge, Mass.: MIT Press.Google Scholar
  142. Kraitchik, Maurice (1942). Mathematical Recreations. New York: W. W. Norton.zbMATHGoogle Scholar
  143. Kuhn, Thomas S. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
  144. Kurzweil, Ray (2012). How to Create a Mind: The Secret of Human Thought Revealed. New York: Viking.Google Scholar
  145. Lakoff, George and Núñez, Rafael (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books.zbMATHGoogle Scholar
  146. Li, Yan and Du, Shiran 1987. Chinese Mathematics: A Concise History, translated by J. H. Crossley and A. W-C. Lun. Oxford: Oxford University Press.Google Scholar
  147. Livio, Mario (2002). The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. New York: Broadway Books.zbMATHGoogle Scholar
  148. Loyd, Sam (1914). Cyclopedia of Tricks and Puzzles. New York: Dover.Google Scholar
  149. Loyd, Sam (1952). The Eighth Book of Tan. New York: Dover.Google Scholar
  150. Loyd, Sam (1959–1960). Mathematical Puzzles of Sam Loyd, 2 volumes, compiled by Martin Gardner. New York: Dover.Google Scholar
  151. Lucas, Edouard A. (1882–1894). Récreations mathématiques, 4 vols. Paris: Gauthier-Villars.zbMATHGoogle Scholar
  152. Martin, Robert (2004). The St. Petersburg Paradox. In: The Stanford Encyclopedia. Stanford: Stanford University Press.Google Scholar
  153. Maor, Eli (1998). Trigonometric Delights. Princeton: Princeton University Press.zbMATHGoogle Scholar
  154. Margalit, Avishai and Bar-Hillel, M. (1983). Expecting the Unexpected. Philosophia 13: 337–344.CrossRefGoogle Scholar
  155. Matthews, William H. (1970). Mazes & Labyrinths: Their History & Development. New York: Dover.Google Scholar
  156. Merton, Robert K. and Barber, Elinor (2003). The Travels and Adventures of Serendipity: A Study in Sociological Semantics and the Sociology of Science. Princeton: Princeton University Press.Google Scholar
  157. Morrow, Glenn R. (1970). A Commentary on the First Book of Euclid’s Elements. Princeton: Princeton University PressGoogle Scholar
  158. Nave, Ophir, Neuman, Yair, Howard, Newton, and Perslovsky, L. (2014). How Much Information Should We Drop to Become Intelligent? Applied Mathematics and Computation 245: 261–264.CrossRefGoogle Scholar
  159. Netz, Reviel and Noel, William (2007). The Archimedes Codex: Revealing the Secrets of the World’s Greatest Palimpsest. London: Weidenfeld & Nicholson.Google Scholar
  160. Neugebauer, Otto and Sachs, Joseph (1945). Mathematical Cuneiform Texts. New Haven: American Oriental Society.zbMATHGoogle Scholar
  161. Neumann, John von (1958). The Computer and the Brain. New Haven: Yale University Press.Google Scholar
  162. Neuman, Yair (2007). Immune Memory, Immune Oblivion: A Lesson from Funes the Memorious. Progress in Biophysics and Molecular Biology 92: 258267.Google Scholar
  163. Neuman, Yair (2014). Introduction to Computational Cultural Psychology. Cambridge: Cambridge University Press.Google Scholar
  164. Nuessel, Frank (2013). The Representation of Mathematics in the Media. In: M. Bockarova, M. Danesi and R. Núñez (eds.), Semiotic and Cognitive Science Essays on the Nature of Mathematics, pp. 154-198. Munich: Lincom Europa.Google Scholar
  165. Northrop, Eugene (1944). Riddles in Mathematics. London: Penguin.zbMATHGoogle Scholar
  166. Ogilvy, C. (1956). Excursions in Mathematics. New York: Dover.Google Scholar
  167. Olivastro, Dominic (1993). Ancient Puzzles: Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam.Google Scholar
  168. O’Shea, Donal (2007). The Poincaré Conjecture. New York: Walker.zbMATHGoogle Scholar
  169. Pappas, Theoni (1991). More Joy of Mathematics. San Carlos: Wide World Publishing.Google Scholar
  170. Peet, Thomas E. (1923). The Rhind Papyrus. Liverpool: University of Liverpool Press.zbMATHGoogle Scholar
  171. Peirce, Charles S. (1931–1958). Collected Papers of Charles Sanders Peirce, ed. by C. Hartshorne, P. Weiss and A.W. Burks, vols. 1-8. Cambridge: Harvard University Press.Google Scholar
  172. Petkovic, Miodrag S. (2009). Famous Puzzles of Great Mathematicians. Providence, RI: American Mathematical Society.zbMATHCrossRefGoogle Scholar
  173. Phillips, Hubert (1966). Caliban’s Problem Book. New York: Dover.Google Scholar
  174. Plato (2004). The Republic, ed. by C. D. C. Reeve. Indianapolis: Hackett.Google Scholar
  175. Plato (2006). Meno, ed. by Dominic Scott. Cambridge: Cambridge University Press.Google Scholar
  176. Pohl, Ira (1967). A Method for Finding Hamiltonian Paths and Knight’s Tours. Communications of the ACM 10(7): 446–449.CrossRefGoogle Scholar
  177. Polya, George (1921). Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Mathematische Annalen 84: 149–160.MathSciNetzbMATHCrossRefGoogle Scholar
  178. Posamentier, Alfred S. and Lehmann, Ingmar (2007). The (Fabulous) Fibonacci Numbers. Amherst: Prometheus.zbMATHGoogle Scholar
  179. Pressman, Ian and Singmaster, David (1989). The Jealous Husbands and the Missionaries and Cannibals. The Mathematical Gazette 73: 73-81.MathSciNetCrossRefGoogle Scholar
  180. Read, Ronald C. (1965). Tangrams: 330 Tangram Puzzles New York: Dover.Google Scholar
  181. Richards, Dana (1999). Martin Gardner: A “Documentary.” In: E. Berlekamp and T. Rodgers (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 3-12. Natick, Mass.: A. K. Peters.Google Scholar
  182. Richeson, David S. (2008). Euler’s Gem: The Polyhedron Formula and the Birth of Topology. Princeton: Princeton University Press.zbMATHGoogle Scholar
  183. Rockmore, Dan (2005). Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers. New York: Vintage.zbMATHGoogle Scholar
  184. Roberts, Royston M. (1989). Serendipity: Accidental Discoveries in Science. New York: John Wiley.Google Scholar
  185. Robins, R. Gay and Shute, Charles C. D. (1987). The Rhind Mathematical Papyrus: An Ancient Egyptian Text. London: British Museum Publications Limited.zbMATHGoogle Scholar
  186. Rosenhouse, Jason and Taalman, Laura (2011). Taking Sudoku Seriously. Oxford: Oxford University Press.zbMATHGoogle Scholar
  187. Rucker, Rudy (1987). Mind Tools: The Five Levels of Mathematical Reality. Boston: Houghton Mifflin.zbMATHGoogle Scholar
  188. Russell, Bertrand (1918). The Philosophy of Logical Atomism. London: Routledge.Google Scholar
  189. Russell, Bertrand and Whitehead, Alfred North (1913). Principia mathematica. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  190. Sabbagh, Karl (2004). The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics. New York: Farrar, Strauss & Giroux.Google Scholar
  191. Schneider, Michael S. (1994). Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science. New York: Harper Collins.Google Scholar
  192. Schuh, Fred (1968). The Master Book of Mathematical Recreations. New York: Dover.zbMATHGoogle Scholar
  193. Schwenk, Allen J. (1991). Which Rectangular Chessboards Have a Knight’s Tour? Mathematics Magazine 64: 325–332.MathSciNetzbMATHCrossRefGoogle Scholar
  194. Shapiro, Stuart C. (1998). A Procedural Solution to the Unexpected Hanging and Sorites Paradoxes. Mind 107: 751–761.MathSciNetCrossRefGoogle Scholar
  195. Selvin, Steven (1975). A Problem in Probability (letter to the editor). American Statistician 29: 67.CrossRefGoogle Scholar
  196. Singmaster, David (1998). The History of Some of Alcuin’s Propositiones. In: P. L. Butzer, H. Th. Jongen, and W. Oberschelp (eds.), Charlemagne and His Heritage 1200 Years of Civilization and Science in Europe, Vol. 2, pp. 11–29. Brepols: Turnhout.Google Scholar
  197. Smolin, Lee (2013). Time Reborn: From the Crisis in Physics to the Future of the Universe. Boston: Houghton Mifflin Harcourt.Google Scholar
  198. Smullyan, Raymond (1978). What Is the Name of this Book? The Riddle of Dracula and Other Logical Puzzles. Englewood Cliffs, N.J.: Prentice-Hall.zbMATHGoogle Scholar
  199. Smullyan, Raymond (1979). The Chess Mysteries of Sherlock Holmes. New York: Knopf.Google Scholar
  200. Smullyan, Raymond (1982). Alice in Puzzle-Land. Harmondsworth: Penguin.Google Scholar
  201. Smullyan, Raymond (1997). The Riddle of Scheherazade and Other Amazing Puzzles, Ancient and Modern. New York: Knopf.Google Scholar
  202. Spalinger, Anthony (1990). The Rhind Mathematical Papyrus as a Historical Document. Studien zur Altägyptischen Kultur 17: 295–337Google Scholar
  203. Sternberg, Robert J. (1985). Beyond IQ: A Triarchic Theory of Human Intelligence. New York: Cambridge University Press.Google Scholar
  204. Stewart, Ian (1987). From Here to Infinity: A Guide to Today’s Mathematics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  205. Stewart, Ian (2008). Taming the Infinite. London: Quercus.Google Scholar
  206. Stewart, Ian (2012). In Pursuit of the Unknown: 17 Equations That Changed the World. New York: Basic Books.zbMATHGoogle Scholar
  207. Strohmeier, John and Westbrook, Peter (1999). Divine Harmony: The Life and Teachings of Pythagoras. Berkeley, CA: Berkeley Hills Books.Google Scholar
  208. Swetz, Frank J. and Kao, T. I. 1977. Was Pythagoras Chinese? An Examination of Right-Triangle Theory in Ancient China. University Park: Pennsylvania State University Press.zbMATHGoogle Scholar
  209. Takagi, Shigeo (1999). Japanese Tangram: The Sei Shonagon Pieces. In: E. Berlekamp and T. Rodgers, (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 97–98. Natick, Mass.: A. K. Peters.Google Scholar
  210. Tall, David (2013). How Humans Learn to Think Mathematically. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  211. Tarski, Alfred. (1933 [1983]). Logic, Semantics, Metamathematics, Papers from 1923 to 1938, John Corcoran (ed.). Indianapolis: Hackett Publishing Company.Google Scholar
  212. Taylor, Richard and Wiles, Andrew (1995). Ring-Theoretic Properties of Certain Hecke Algebras. Annals of Mathematics 141: 553–572.MathSciNetzbMATHCrossRefGoogle Scholar
  213. Thom, René (1975). Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Reading: Benjamin.zbMATHGoogle Scholar
  214. Trigg, Charles W. (1978). What Is Recreational Mathematics? Mathematics Magazine 51: 18–21.MathSciNetCrossRefGoogle Scholar
  215. Turing, Alan (1936). On Computable Numbers with an Application to the Entscheidungs Problem. Proceedings of the London Mathematical Society 42: 230–265.MathSciNetzbMATHGoogle Scholar
  216. Tymoczko, Thomas (1979). The Four-Color Problem and Its Philosophical Significance. Journal of Philosophy 24: 57–83.CrossRefGoogle Scholar
  217. Uexküll, Jakob von (1909). Umwelt und Innenwelt der Tierre. Berlin: Springer.Google Scholar
  218. Vajda, Steven (1989). Fibonacci and Lucas Numbers, and the Golden Section, Chichester: Ellis Horwood.zbMATHGoogle Scholar
  219. Verene, Donald P. (1981). Vico’s Science of Imagination. Ithaca: Cornell University Press.Google Scholar
  220. Vernadore, J. (1991). Pascal’s Triangle and Fibonacci Numbers. The Mathematics Teacher 84: 314-316.Google Scholar
  221. Visser, Beth A., Ashton, Michael C., and Vernon, Philip A. (2006.) g and the Measurement of Multiple Intelligences: A Response to Gardner. Intelligence 34: 507–510.CrossRefGoogle Scholar
  222. Vorderman, Carol (1996). How Math Works. Pleasantville: Reader’s Digest Association.Google Scholar
  223. Warner, George F. (ed.) (2015). The Voyage of Robert Dudley Afterwards Styled Earl of Warwick & Leicester and Duke of Northumberland. Amazon: Scholar’s Choice.Google Scholar
  224. Warnsdorf, H. C. von (1823). Des Rösselsprunges einfachste und allgemeinste Lösung. Schmalkalden: Varnhagen.Google Scholar
  225. Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton: Princeton University Press.zbMATHCrossRefGoogle Scholar
  226. Wells, David (1992). The Penguin Book of Curious and Interesting Puzzles. Harmondsworth: Penguin.zbMATHGoogle Scholar
  227. Wells, David (2005). Prime Numbers: the Most Mysterious Figures in Math. Hoboken: John Wiley.Google Scholar
  228. Wells, David (2012). Games and Mathematics: Subtle Connections. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  229. Wildgen, Wolfgang and Brandt, Per Aage (2010). Semiosis and Catastrophes: René Thom’s Semiotic Heritage. New York: Peter Lang.Google Scholar
  230. Wiles, Andrew (1995). Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics. Second Series 141: 443–551.MathSciNetzbMATHCrossRefGoogle Scholar
  231. Willerding, Margaret (1967). Mathematical Concepts: A Historical Approach. Boston: Prindle, Weber & Schmidt.Google Scholar
  232. Williams, Anne D. (2004). The Jigsaw Puzzle: Piecing Together a History. New York: Berkley Books.Google Scholar
  233. Wilson, Robin (2002). Four Colors Suffice: How the Map Problem Was Solved. Princeton: Princeton University Press.zbMATHGoogle Scholar
  234. Wittgenstein, Ludwig (1922). Tractatus Logico-Philosophicus. London: Routledge and Kegan Paul.zbMATHGoogle Scholar
  235. Zadeh, Lofti A. (1965). Fuzzy Sets. Information and Control 8: 338–353.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcel Danesi
    • 1
  1. 1.Department of AnthropologyUniversity of TorontoTorontoCanada

Personalised recommendations