Thermal Imaging and Infrared Sensing in Plant Ecophysiology

  • Hamlyn G. JonesEmail author


This chapter outlines the potential of thermal sensing as a tool for plant ecophysiological studies and provides a summary of the key biophysical equations involved in the use of thermal sensing for the study of plant water relations. Particular emphasis is placed on the precautions that need to be adopted for high precision applications. The use of reference ‘mimic’ surfaces for improved estimation of stomatal conductance and evapotranspiration is outlined, and some of the precautions necessary for accurate work are described. Not only are recent applications reviewed, but some additional opportunities for use of the technique are described.


  1. Aerts R, November E, Behailu M, Deckers J, Muys B (2004) Ecosystem thermal buffer capacity as an indicator of the restoration status of protected areas in the northern Ethiopian highlands. Restor Ecol 12:586–596CrossRefGoogle Scholar
  2. Allen RG, Tasumi M, Morse A, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – model. J Irrig Drain Eng 133:380–394CrossRefGoogle Scholar
  3. Baranowski P, Lipecki J, Mazurek W, Walczak RT (2008) Detection of watercore in ‘Gloster’ apples using thermography. Postharvest Biol Technol 47:358–366CrossRefGoogle Scholar
  4. Baranowski P, Mazurek W, Walczak W, Slawinski C (2009) Detection of early apple bruises using pulsed-phase thermography. Postharvest Biol Technol 53:91–100CrossRefGoogle Scholar
  5. Bastiaanssen WGM, Menentia M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 213:198–212CrossRefGoogle Scholar
  6. Bastiaanssen WGM, Menentia M, Feddes RA, Holtslag AAM (1998b) A remote sensing surface energy balance algorithm for land (SEBAL) – 2. Validation. J Hydrol 213:213–229CrossRefGoogle Scholar
  7. Bendoricchio G, Jørgensen SE (1997) Exergy as goal function of ecosystems dynamic. Ecol Model 102:5–15CrossRefGoogle Scholar
  8. Ben-Gal A, Agam N, Alchanatis V, Cohen Y, Yermiyahu U, Zipori I, Presnov E, Sprintsin M, Dag A (2009) Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery. Irrig Sci 27:367–376CrossRefGoogle Scholar
  9. Bermadinger-Stebentheiner E, Stabentheiner A (1995) Dynamics of thermogenesis and structure of epidermal tiussues in inflorescences of Arum maculatum. New Phytol 131:41–50CrossRefGoogle Scholar
  10. Brenner AJ, Jarvis PG (1995) A heated leaf replica technique for determination of leaf boundary layer conductance in the field. Agric For Meteorol 72:261–275CrossRefGoogle Scholar
  11. Brough DW, Jones HG, Grace J (1986) Diurnal changes in water content of the stems of apple trees, as influenced by irrigation. Plant Cell Environ 9:1–7Google Scholar
  12. Bryant RB, Moran MS (1999) Determining crop water stress from crop canopy temperature variability. ERIM International, Ann ArborGoogle Scholar
  13. Carter J, Brennan R, Wisniewski M (2001) Patterns of ice formation and movement in blackcurrant. HortSci 36:1027–1032Google Scholar
  14. Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta-Gene Struct Express 1519:153–166CrossRefGoogle Scholar
  15. Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van Der Straeten D (1999) Presymptomatic visulaization of plant-virus interactions by thermography. Nat Biotechnol 17:813–816CrossRefPubMedGoogle Scholar
  16. Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45:887–896CrossRefPubMedGoogle Scholar
  17. Dietrich L, Korner C (2014) Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alpine Bot 124:27–35CrossRefGoogle Scholar
  18. Fuchs M (1990) Infrared measurement of canopy temperature and detection of plant water stress. Theor Appl Climatol 42:253–261CrossRefGoogle Scholar
  19. Fuchs M, Tanner CB (1966) Infrared thermometry of vegetation. Agron J 58:597–601CrossRefGoogle Scholar
  20. Fuentes S, De Bei R, Pech J, Tyerman S (2012) Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig Sci 30:523–536CrossRefGoogle Scholar
  21. Fuller MP, Wisniewski M (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J Thermal Biol 23:81–89CrossRefGoogle Scholar
  22. Gardner BR, Blad BL, Watts DG (1981) Plant and air temperature in differentially irrigated corn. Agric Meteorol 25:201–207CrossRefGoogle Scholar
  23. Grant OM, Tronina L, Jones HG, Chaves MM (2007) Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J Exp Bot 58:815–825CrossRefPubMedGoogle Scholar
  24. Grant OM, Ochagavía H, Baluja J, Diago MP, Tardáguila J (2016) Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.). J Hort Sci Biotech 91:44–55Google Scholar
  25. Guilioni L, Jones HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148:1908–1912CrossRefGoogle Scholar
  26. Hamed F, Fuller MP, Telli G (2000) The pattern of freezing of grapevine shoots during early bud growth. Cryo-Lett 21:255–260Google Scholar
  27. Idso SB (1982) Non-water-stressed baselines - a key to measuring and interpreting plant water-stress. Agric Meteorol 27:59–70CrossRefGoogle Scholar
  28. Irmak S, Dorota ZH, Bastug R (2000) Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron J 92:1221–1227CrossRefGoogle Scholar
  29. Jackson RD, Reginato RJ, Idso SB (1977) Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resour Res 13:651–656CrossRefGoogle Scholar
  30. Jackson RD, Idso SB, Reginato RJ, Pinter PJ Jr (1981) Canopy temperature as a crop water-stress indicator. Water Resour Res 17:1133–1138CrossRefGoogle Scholar
  31. Jones HG (1999a) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric Forest Meteorol 95:139–149CrossRefGoogle Scholar
  32. Jones HG (1999b) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–1055CrossRefGoogle Scholar
  33. Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–163CrossRefGoogle Scholar
  34. Jones HG (2014) Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  35. Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, OxfordGoogle Scholar
  36. Jones HG, Aikman D, McBurney TA (1997) Improvements to infra-red thermometry for irrigation scheduling. Acta Hort 449:259–266CrossRefGoogle Scholar
  37. Jones HG, Stoll M, Santos T, de Sousa C, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53:2249–2260CrossRefPubMedGoogle Scholar
  38. Jones HG, Serraj R, Loveys BR, Xiong LH, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989CrossRefGoogle Scholar
  39. Jones HG, Hutchinson PA, May T, Jamali H, Deery DM (2017) A practical method using a network of fixed infrared sensors for estimating crop canopy conductance and evaporation rate. Biosyst Eng 165:59–69CrossRefGoogle Scholar
  40. Keener ME, Kircher PL (1983) The use of canopy temperature as an indicator of drought stress in humid regions. Agric Meteorol 28:339–349CrossRefGoogle Scholar
  41. Kustas WP (1990) Estimates of evapotranspiration with one- and two-layer model of heat transfer over partial land cover. J Appl Meteorol 29:704–715CrossRefGoogle Scholar
  42. Kustas WP, Anderson M (2009) Advances in thermal infrared remote sensing for land surface modeling. Agric For Meteorol 149:2071–2081CrossRefGoogle Scholar
  43. Lamprecht I, Schmolz E, Blanco L, Romero CM (2002) Flower ovens: thermal investigations on heat producing plants. Thermochim Acta 391:107–118CrossRefGoogle Scholar
  44. Lamprecht I, Maierhofer C, Röllig M (2006) A thermographic promenade through the Berlin Botanic Garden. Thermochim Acta 446:4–10CrossRefGoogle Scholar
  45. Leigh A, Close JD, Ball MC, Siebke K, Nicotra AB (2006) Light cooling curves: measuring leaf temperature in sunlight. Funct Plant Biol 33:515–519CrossRefGoogle Scholar
  46. Leinonen I, Jones HG (2004) Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–1431CrossRefPubMedGoogle Scholar
  47. Leinonen I, Grant OM, Tagliavia CP, Chaves MM, Jones HG (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29:1508–1518CrossRefPubMedGoogle Scholar
  48. Leuzinger S, Körner C (2007) Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric For Meteorol 146:29–37CrossRefGoogle Scholar
  49. Lindenthal M, Steiner U, Dehne H-W, Oerke E-C (2005) Effect of downy mildew development on transpiration of cucumber leaves visualised by digital infrared thermography. Phytopathology 95:233–240CrossRefPubMedGoogle Scholar
  50. Maes WH, Steppe K (2012) Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review. J Exp Bot 63:4671–4712CrossRefPubMedGoogle Scholar
  51. Maes WH, Baert A, Steppe K, Huete AR, Minchin PEH, Snelgar WP (2016) A new wet reference target method for continuous infraredthermography of vegetations. Agric For Meteorol 226:119–131CrossRefGoogle Scholar
  52. McNaughton KG, Jarvis PG (1983) Predicting the effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT (ed) Water deficits and plant growth. Academic, New York, pp 1–47Google Scholar
  53. Meron M, Alchanatis V, Cohen Y, Tsipris J, Orlov V (2010) Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis Agric 11:148–162CrossRefGoogle Scholar
  54. Monteith JL, Unsworth MH (2008) Principles of environmental physics, 3rd edn. Academic, BurlingtonGoogle Scholar
  55. Qiu G-Y, Yano T, Momii K (1996) Estimation of plant transpiration by imitation leaf temperature – application of imitation leaf temperature for detection of crop water stress (II). Trans JSIDRE 185:43–49Google Scholar
  56. Raschke K (1956) Über die physikalischen Beziehungen zwischen Wärmeübergangszahl, Strahlungsaustausch, Temperatur und transpiration eines Blattes [The physical relationships between heat-transfer coefficients, radiation exchange, temperature and transpiration of a leaf.]. Planta 48:200–238CrossRefGoogle Scholar
  57. Raschke K (1960) Heat transfer between the plant and the environment. Annu Rev Plant Physiol 11:111–126CrossRefGoogle Scholar
  58. Skubatz H, Nelson TA, Meeuse BJ, Bendich AJ (1991) Heat production in the Voodoo lily (Sauromatum guttatum) as monitored by infrared thermography. Plant Physiol 95:1084–1088CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sobrino JA, Gómez M, Jiménez-Muñoz JC, Olioso A (2007) Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sens Environ 110:139–148CrossRefGoogle Scholar
  60. Stier JC, Filiault DL, Wisniewski M, Palta JP (2003) Visualization of freezing progression in turfgrasses using infrared video thermography. Crop Sci 43:415–420CrossRefGoogle Scholar
  61. Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B (2008) Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precis Agric 9:407–417CrossRefGoogle Scholar
  62. Tanner CB (1963) Plant temperatures. Agron J 55:210–211CrossRefGoogle Scholar
  63. Veroustraete F, Li Q, Verstraeten WW, Chen X, Bao A, Dong Q, Liu T, Willems P (2012) Soil moisture content retrieval based on apparent thermal inertia for Xinjiang province in China. Int J Remote Sens 33:3870–3885CrossRefGoogle Scholar
  64. Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens Environ 101:299–314CrossRefGoogle Scholar
  65. Zhang D, Zhou G (2016) Estimation of soil moisture from optical and thermal remote sensing: a review. Sensors 16:1308CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of DundeeDundeeUK
  2. 2.University of Western AustraliaCrawleyAustralia

Personalised recommendations