Advertisement

Elucidating the Phytotoxic Potential of Natural Compounds

  • Adela M. Sánchez-Moreiras
  • Elisa Graña
  • Carla Díaz-Tielas
  • David López-González
  • Fabrizio Araniti
  • María Celeiro
  • Marta Teijeira
  • Mercedes Verdeguer
  • Manuel J. Reigosa
Chapter

Abstract

In the study of the potential use of natural compounds as phytotoxins is necessary to address the phytotoxic capacity of the compound, knowing its mode of action, as well as its specificity against crops and its stability in the ecosystem. A strong phytotoxic metabolite with a very short half-life or a very limited translocation and transport capacity may be very unhelpful in the management of weeds under natural conditions. That is why a triple approach is proposed in this chapter for the study of natural compounds’ phytotoxic potential.

References

  1. Albers JW (1997) Understanding gene-environment. Environ Health Persp 105:578–580CrossRefGoogle Scholar
  2. Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM (2016) Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PLoS One 11(8):e0160568CrossRefGoogle Scholar
  3. Araniti F, Lupini A, Sunseri F, Abenavoli MR (2017a) Allelopatic potential of Dittrichia viscosa (L.) W. Greuter mediated by VOCs: a physiological and metabolic approach. PLoS One 12:e0170161Google Scholar
  4. Araniti F, Sánchez-Moreiras AM, Graña E, Reigosa MJ, Abenavoli MR (2017b) Terpenoid trans-caryophyllene inhibits weeds germination and induces plant water-status alteration and oxidative damage in Arabidopsis adult plants. Plant Biol 19:79–89Google Scholar
  5. Baerson S, Sánchez-Moreiras AM, Pedrol N, Schulz M, Kagan IA, Agarwal AK, Reigosa MJ, Duke SO (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 280:21867–21881CrossRefPubMedGoogle Scholar
  6. Berenbaum MR (2002) Postgenomic chemical ecology: from genetic code to ecological interactions. J Chem Ecol 28:873–896CrossRefPubMedGoogle Scholar
  7. Coba de la Peña T, Sánchez-Moreiras AM (2001) Cell cycle. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 65–80CrossRefGoogle Scholar
  8. Concenço G, Silva AF, Ferreira EA, Galon L, Noldin JA, Aspiazu I, Ferreira FA, Silva AA (2009) Effect of dose and application site on quinclorac absorption by barnyardgrass biotypes. Planta Daninha 27:541–548CrossRefGoogle Scholar
  9. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124CrossRefPubMedGoogle Scholar
  10. Dayan FE, Romagni JG, Duke S (2000) Investigating the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094CrossRefGoogle Scholar
  11. De Boer GJ, Thornburgh S, Gilbert J, Gast RE (2011) The impact of uptake, translocation and metabolism on the differential selectivity between blackgrass and wheat for the herbicide pyroxsulam. Pest Manag Sci 67:279–286CrossRefGoogle Scholar
  12. Díaz-Tielas C, Graña E, Sotelo T, Reigosa MJ, Sánchez-Moreiras AM (2012) The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant Cell Environ 35:1500–1517CrossRefPubMedGoogle Scholar
  13. Díaz-Tielas C, Sotelo T, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2014) Phytotoxic potential of trans-chalcone on crop plants and model species. J Plant Growth Regul 33:181–194CrossRefGoogle Scholar
  14. Duke SO, Owens DK, Dayan FE (2014) The growing need for biochemical bioherbicides. In: Biopesticides: state of the art and future opportunities, ACS symposium series, vol 1172. American Chemical Society, Washington, DC, pp 31–43Google Scholar
  15. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. In: Functional genomics. Springer, Dordrecht, pp 155–171CrossRefGoogle Scholar
  16. González MP, Terán C, Fall Y, Diaz LC, Helguera AM (2005) A topological sub-structural approach to the mutagenic activity in dental monomers. 3. Heterogeneous set of compounds. Polymer 46:2783–2790CrossRefGoogle Scholar
  17. González MP, Terán C, Teijeira M (2008a) Search for new antagonist ligands for adenosine receptors from QSAR point of view. How close are we? Med Res Rev 28:329–371CrossRefPubMedGoogle Scholar
  18. González MP, Terán C, Saíz-Urra L, Teijeira M (2008b) Variable selection methods in QSAR: an overview. Curr Topics Med Chem 8:1606–1627CrossRefGoogle Scholar
  19. Graña E, Sotelo T, Díaz-Tielas C, Araniti F, Krasuska U, Bogatek R, Reigosa MJ, Sánchez-Moreiras AM (2013a) Citral induces auxin-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282CrossRefPubMedGoogle Scholar
  20. Graña E, Sotelo T, Díaz-Tielas C, Reigosa MJ, Sánchez-Moreiras AM (2013b) The phytotoxic potential of the terpenoid citral on seedlings and adult plants. Weed Sci 61:469–481CrossRefGoogle Scholar
  21. Graña E, Costas-Gil A, Longueira S, Celeiro M, Teijeira M, Reigosa MJ, Sánchez-Moreiras AM (2017) Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. J Plant Physiol 218:45–55CrossRefPubMedGoogle Scholar
  22. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP, Fang M, Aisporna A, Hilmers B, Poole FL, Thorgersen MP, Adams MWW, Krantz G, Fields MW, Robbins PD, Niedernhofer LJ, Ideker T, Majumder EL, Wall JD, Rattray NJW, Goodacre R, Lairson LL, Thorgersen MP (2017) Systems biology guided by XCMS Online metabolomics. Nat Meth 14:461–462CrossRefGoogle Scholar
  24. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549CrossRefPubMedGoogle Scholar
  25. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc 1(1):387–396CrossRefPubMedGoogle Scholar
  26. Martínez-Peñalver A, Reigosa MJ, Sánchez-Moreiras AM (2011) Imaging chlorophyll a fluorescence reveals specific spatial distributions under different stress conditions. Flora 206:836–844CrossRefGoogle Scholar
  27. Martínez-Peñalver A, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2012a) The early response of Arabidopsis thaliana to cadmium- and copper-induced stress. Environ Exp Bot 78:1–9CrossRefGoogle Scholar
  28. Martínez-Peñalver A, Pedrol N, Reigosa MJ, Sánchez-Moreiras AM (2012b) The tolerance of Arabidopsis thaliana to the allelochemical protocatechualdehyde. J Plant Growth Regul 31:406–415CrossRefGoogle Scholar
  29. Pedrol N, Tiburcio AF (2001) Polyamines determination by TLC and HPLC. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 335–364Google Scholar
  30. Sánchez-Moreiras AM, Pedrol Bonjoch N (2001) Two-dimensional electrophoresis. Stress proteins. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 297–333Google Scholar
  31. Sánchez-Moreiras AM, Reigosa MJ (2005) Whole plant response of lettuce after root exposure to BOA (2(3H)-benzoxazolinone). J Chem Ecol 31:2689–2703CrossRefPubMedGoogle Scholar
  32. Sánchez-Moreiras AM, Reigosa MJ (2018) Proteomic analyses of BOA effects on lettuce leaves. J Allelochem Interact 4(2):in pressGoogle Scholar
  33. Sánchez-Moreiras AM, Coba de la Peña T, Martínez Otero A, Santos Costa XX (2001) Mitotic index. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, Dordrecht, pp 81–94CrossRefGoogle Scholar
  34. Sánchez-Moreiras AM, Coba de la Peña T, Reigosa MJ (2008) The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69:2172–2179CrossRefPubMedGoogle Scholar
  35. Sánchez-Moreiras AM, Pedrol N, González L, Reigosa MJ (2009) 2-3H-Benzoxazolinone (BOA) induces loss of salt tolerance in salt adapted plants. Plant Biol 11:582–590CrossRefPubMedGoogle Scholar
  36. Sánchez-Moreiras AM, Oliveros-Bastidas A, Reigosa MJ (2010) Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. J Chem Ecol 36:205–209CrossRefPubMedGoogle Scholar
  37. Sánchez-Moreiras AM, Martínez-Peñalver A, Reigosa MJ (2011) Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. J Plant Physiol 168:863–870CrossRefPubMedGoogle Scholar
  38. Schulze A, Downward J (2001) Navigating gene expression using microarrays – a technology review. Nat Cell Biol 3:E190–E195CrossRefPubMedGoogle Scholar
  39. Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26(18):2342–2344CrossRefPubMedGoogle Scholar
  40. Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112:152–166CrossRefPubMedGoogle Scholar
  41. Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137(2):293–300CrossRefPubMedGoogle Scholar
  42. Zivy M, de Vienne D (2000) Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol 44:575–580CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adela M. Sánchez-Moreiras
    • 1
  • Elisa Graña
    • 2
  • Carla Díaz-Tielas
    • 2
  • David López-González
    • 2
  • Fabrizio Araniti
    • 3
  • María Celeiro
    • 4
  • Marta Teijeira
    • 4
  • Mercedes Verdeguer
    • 5
  • Manuel J. Reigosa
    • 1
  1. 1.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain
  2. 2.Department of Plant Biology and Soil Science, Faculty of Biology, and Agri-Food Research and Transfer Centre of the Water Campus (CITACA)University of VigoVigoSpain
  3. 3.Dipartimento di Agraria, Facoltà di AgrariaUniversità Mediterranea di Reggio CalabriaReggio CalabriaItaly
  4. 4.Department of Organic Chemistry, Faculty of ChemistryUniversity of VigoVigoSpain
  5. 5.Instituto Agroforestal MediterráneoUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations