In Vitro and In Vivo Bioassays

  • Mercedes VerdeguerEmail author


The plant’s environment is determined by all the physical and chemical factors that characterize the habitats, and also by the effects that other co-occurring organisms induce on them. The functional study of plant’s behaviour in their environment linked ecology and physiology in a new discipline, the ecophysiology (Pardos 2005). Ecophysiologists, or physiological ecologists deal with ecological questions like the mechanisms that regulate and control growth, reproduction, survival, abundance, and geographical distribution of plants, as these processes are affected by interactions of plants with their physical, chemical, and biotic environment. The knowledge of these ecophysiological patterns and mechanisms helps to understand the functional significance of specific plant traits and their evolutionary heritage. Ecophysiological techniques have greatly advanced understanding of photosynthesis, respiration, plant water relations, and plant responses to abiotic and biotic stress, from immediate to evolutionary timescales. Many important societal issues, as agriculture, climate change, or nature conservation, benefit from the application of an ecophysiological perspective (Lambers et al. 2008). Plants have adapted to an incredible range of environments, and the fields of ecological and environmental plant physiology have provided tools for understanding the survival, distribution, productivity, and abundance of plant species across the diverse climates of our planet (Ainsworth et al. 2016).


  1. Ainsworth EA, Bernacchi CJ, Dohleman FG (2016) Focus on ecophysiology. Plant Physiol 172:619–621PubMedPubMedCentralGoogle Scholar
  2. Angelini LG, Carpanese G, Cioni PL, Morelli I, Macchia M, Flamini G (2003) Essential oils from Mediterranean lamiaceae as weed germination inhibitors. J Agric Food Chem 51:6158–6164CrossRefPubMedGoogle Scholar
  3. Araniti F, Graña E, Reigosa MJ, Sánchez-Moreiras AM, Abenavoli MR (2013) Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana. Nat Prod Res 27:2297–2303CrossRefPubMedGoogle Scholar
  4. Araniti F, Sánchez-Moreiras AM, Graña E, Reigosa MJ, Abenavoli MR (2017) Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult arabidopsis. Plant Biol 19:79–89CrossRefPubMedGoogle Scholar
  5. Barnes JP, Putnam AR (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J Chem Ecol 13:889–906CrossRefPubMedGoogle Scholar
  6. Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort Artemisia vulgaris. J Chem Ecol 31:247–265CrossRefPubMedGoogle Scholar
  7. Benvenuti S, Cioni PL, Flamini G, Pardossi A (2017) Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Res 57:342–353CrossRefGoogle Scholar
  8. Castañeda LG (2017) Control de Conyza bonariensis con aceites esenciales de plantas mediterráneas Thymbra capitata, Mentha x piperita, Santolina chamaecyparissus y Eucalyptus camaldulensis. Trabajo Final de Máster. Universitat Politècnica de ValènciaGoogle Scholar
  9. Chiapusio G, Sánchez AM, Reigosa MJ, González L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23:2445–2453CrossRefGoogle Scholar
  10. Chon SU, Nelson CJ (2001) Effects of experimental procedures and conditions on bioassay sensitivity of alfalfa autotoxicity. Commun Soil Sci Plant Anal 32:1607–1619CrossRefGoogle Scholar
  11. Dayan F, Duke S (2006) Clues in the search for new herbicides. In: Reigosa M, Pedrol N, González L (eds) Allelopathy. Springer, Dordrecht, pp 63–83CrossRefGoogle Scholar
  12. Deng J, Zhang Y, Hu J, Jiao J, Hu F, Li H, Zhang S (2017) Autotoxicity of phthalate esters in tobacco root exudates: effects on seed germination and seedling growth. Pedosphere 27:1073–1082CrossRefGoogle Scholar
  13. Díaz-Tielas C, Sotelo T, Graña E, Reigosa MJ, Sánchez-Moreiras AM (2014) Phytotoxic potential of trans-chalcone on crop plants and model species. J Plant Growth Regul 33:181–194CrossRefGoogle Scholar
  14. Dudai N, Poljakoff-Mayber A, Mayer AM, Putievsky E, Lerner HR (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J Chem Ecol 25:1079–1089CrossRefGoogle Scholar
  15. Einhellig FA (1995) Allelopathy: current status and future goals. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington, DC, pp 1–24Google Scholar
  16. Graña E, Sotelo T, Díaz-Tielas C, Reigosa M, Sánchez-Moreiras AM (2013) The phytotoxic potential of the terpenoid citral on seedlings and adult plants. Weed Sci 61:469–481CrossRefGoogle Scholar
  17. Herranz JM, Ferrandis P, Copete MA, Duro EM, Zalacain A (2006) Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol 184:259–272CrossRefGoogle Scholar
  18. Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539CrossRefPubMedGoogle Scholar
  19. Inderjit, Keating KI (1999) Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agron 67:141–231CrossRefGoogle Scholar
  20. Inderjit, Streibig J, Olofsdotter M (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol Plant 114:422–428CrossRefGoogle Scholar
  21. Koroch AR, Rodolfo Juliani H, Zygadlo JA (2007) Bioactivity of essential oils and their components. In: Berger RG (ed) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, Berlin/Heidelberg, pp 87–115CrossRefGoogle Scholar
  22. Lambers H, Pons TL, Chapin FS (2008) Plant physiological ecology. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  23. Leather GR, Einhellig FA (1988) Bioassay of naturally occurring allelochemicals for toxicity. J Chem Ecol 14:1821–1828CrossRefPubMedGoogle Scholar
  24. Lotina-Hensen B, King-Díaz B, Aguilar MI, Hernández Terrones MG (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 229–265CrossRefGoogle Scholar
  25. Lydon J, Teasdale JR, Chen PK (1997) Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci 45:807–811Google Scholar
  26. Macías FA, Molinillo JMG, Galindo JCG, Varela RM, Simonet AM, Castellano D (2001) The use of allelopathic studies in the search for natural herbicides. J Crop Prod 4:237–255CrossRefGoogle Scholar
  27. Macías FA, Oliveros-Bastidas A, Marin D, Carrera C, Chinchilla N, Molinillo JMG (2008) Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem Rev 7:179–194CrossRefGoogle Scholar
  28. Pardos JA (2005) Ecophysiology, a meeting point between function and management of forest ecosystems. Investigación Agraria: Sistemas y Recursos Forestales 14:277–291Google Scholar
  29. Pederson GA (1986) White clover seed germination in agar containing tall fescue leaf extracts. Crop Sci 26:1248–1249CrossRefGoogle Scholar
  30. Pennacchio M, Jefferson L, Havens K (2005) Arabidopsis thaliana: a new test species for phytotoxic bioassays. J Chem Ecol 31:1877–1885CrossRefPubMedGoogle Scholar
  31. Reigosa MJ, Malvido-Pazos E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J Chem Ecol 33:1456–1466CrossRefPubMedGoogle Scholar
  32. Reigosa MJ, Souto XC, González L (1999) Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul 28:83–89CrossRefGoogle Scholar
  33. Verdeguer M (2011) Fitotoxicidad de aceites esenciales y extractos acuosos de plantas. mediterráneas para el control de arvenses. Tesis doctoral, Universitat Politècnica de ValènciaGoogle Scholar
  34. Verdeguer M, Blazquez MA, Boira H (2009a) Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochem Syst Ecol 37:362–369CrossRefGoogle Scholar
  35. Verdeguer M, Garcia D, Blázquez MA, Boira H (2009b) Potencial alelopático de extractos acuosos de Lantana camara, Eucalyptus camaldulensis y Eriocephalus africanus y posible uso como herbicidas naturales. In: Herbologia e Biodiversidade numa Agricultura Sustentável ,vol 1, pp 403–406Google Scholar
  36. Warrag MOA (1995) Autotoxic potential of foliage on seed germination and early growth of mesquite (Prosopis juliflora). J Arid Environ 31:415–421CrossRefGoogle Scholar
  37. Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875CrossRefGoogle Scholar
  38. Weidenhamer JD, Morton TC, Romeo JT (1987) Solution volume and seed number: often overlooked factors in allelopathic bioassay. J Chem Ecol 13:1481–1491CrossRefPubMedGoogle Scholar
  39. Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Agroforestal MediterráneoUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations