Advertisement

Design and Planning of Waste Collection System

  • Ana Pires
  • Graça Martinho
  • Susana Rodrigues
  • Maria Isabel Gomes
Chapter

Abstract

The purpose of this chapter is to present the principal factors and objectives to consider when planning a collection system. The prediction and estimation of the amount of waste and the type of waste collection service that is intended to be provided, together with the help of geographic information systems (GIS) to locate containers and design routes, are tools to be used during the adequate design and planning of a waste collection system. Here a specific focus is on waste prediction models, due to its importance on planning, operating, and optimizing waste management system, as well as in the difficulty in predicting, directly, waste generation and its dependence on numerous factors, directly and indirectly, related with the consumption patterns, disposal habits, and urbanization.

Keywords

Forecasting models Time series Waste generation estimations Trucks Containers GIS Routing 

References

  1. Abbasi M, El Hanandeh A (2016) Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Manag 56:13–22CrossRefGoogle Scholar
  2. Abbasi M, Abduli MA, Omidvar B, Baghvand A (2013) Forecasting municipal solid waste generation by hybrid support vector machine and partial least square model. Int J Environ Res 7:27–38Google Scholar
  3. Armstrong JS (Ed.). (2001). Principles of forecasting: a handbook for researchers and practitioners (Vol. 30). Springer Science & Business MediaGoogle Scholar
  4. Arroyo J, Maté C (2009) Forecasting histogram time series with k-nearest neighbours methods. Int J Forecast 25(1):192–207CrossRefGoogle Scholar
  5. Beigl P, Lebersorger S, Salhofer S (2008) Modelling municipal solid waste generation: a review. Waste Manag 28:200–214CrossRefGoogle Scholar
  6. Bektaş T, Laporte G (2011) The pollution-routing problem. Transp Res B Methodol 45(8):1232–1250CrossRefGoogle Scholar
  7. Beliën J, De Boeck L, Van Ackere J (2014) Municipal solid waste collection and management problems: a literature review. Transp Sci 48:78–102CrossRefGoogle Scholar
  8. Bilitewski B, Härdtle G, Marek K (1994) Waste management. Springer, BerlinGoogle Scholar
  9. Bilitewski B, Wagner J, Reichenbach J (2010) Best practice municipal waste management (INTECUS Dresden GmbH - Abfallwirtschaft und umweltintegratives Management). Federal Environmental Agency, IntecusGoogle Scholar
  10. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control, 4th edn. Wiley, Hoboken, N.JGoogle Scholar
  11. Dahlén L, Lagerkvist A (2010) Evaluation of recycling programmes in household waste collection systems. Waste Manag Res 28:577–586CrossRefGoogle Scholar
  12. Faulin J, Juan A, Lera-López F (2012) Optimizing routes with safety and environmental criteria in transportation management in Spain: a case study. In: Wang J (ed) Management innovations for intelligent supply chains. IGI Global Books, Pennsylvania, pp 144–165Google Scholar
  13. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRefGoogle Scholar
  14. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Waltham, USACrossRefGoogle Scholar
  15. Hoffman KL, Padberg M, Rinaldi G (2013) T. In Encyclopedia of Operations Research and Management Science (pp. 1573–1578)CrossRefGoogle Scholar
  16. Hrebicek J, Soukopova J (2010) Modelling integrated waste management system of the Czech Republic. In: Proceedings of the latest trends on systems: 14th WSEAS international conference on systems (part of the 14th WSEAS CSCC multiconference), pp 510–515Google Scholar
  17. Hyndman R (2006) Another look at forecast-accuracy metrics for intermittent demand. Foresight Int J Appl Forecast:43–46Google Scholar
  18. Hyndman RJ, Athanasopoulos G (2014) Forecasting: principles and practice. OTextsGoogle Scholar
  19. IMPACTPapeRec (2016) Best practice handbook – Selection trees Available at: http://impactpaperec.eu/en/best-practices/selection-tree/. Accessed March 2018
  20. ISWA (2007) ISWA TECHNICAL POLICY NO. 5 - Storage, Collection, Transportation and Transfer of Solid waste. 2ª versão available at : http://www.iswa.org/en/76/publications.html accessed January 2015
  21. Jobson JD (1991) Multiple Linear Regression. In: Applied Multivariate Data Analysis. Springer Texts in Statistics. Springer, New York, NYGoogle Scholar
  22. Kaliampakos D, Benardos A (2013) Underground solutions for urban waste management: status and perspectives. ISWA Report ISWAGoogle Scholar
  23. Karadimas NV, Loumos VG (2008) GIS-based modelling for the estimation of municipal solid waste generation and collection. Waste Manag Res 26(4):337–346CrossRefGoogle Scholar
  24. Kim B-I, Kim S, Sahoo S (2006) Waste collection vehicle routing problem with time windows. Comput Oper Res 33:3624–3642CrossRefGoogle Scholar
  25. Lechner P (2004) Kommunale Abfallentsorgung. Wien: Facultas Verlags- und Buchhandels AGGoogle Scholar
  26. Lu JW, Chang NB, Liao L, Liao MY (2015) Smart and green urban solid waste collection systems: advances, challenges, and perspectives. IEEE Syst J:1–14Google Scholar
  27. Navarro-Esbrí J, Diamadopoulos E, Ginestar D (2002) Time series analysis and forecasting techniques for municipal solid waste management. Resour Conserv Recycl 35:201–214CrossRefGoogle Scholar
  28. Nuortio T, Kytöjoki J, Niska H, Bräysy O (2006) Improved route planning and scheduling of waste collection and transport. Expert Syst Appl 30:223–232CrossRefGoogle Scholar
  29. O'Leary P, Walsh P (1995) Decision Maker’s guide to solid waste management. United States Environmental Protection Agency, Office of Solid Waste, RCRA Information Center, Washington, DCGoogle Scholar
  30. Pferdehirt W (1994) University of Wisconsin–Madison Solid and hazardous waste education centerGoogle Scholar
  31. Pferdehirt W, O’Leary P, Walsh P (1993) Developing an integrated collection strategy. Waste recycling collection course, lesson one. Waste Age 1:25–38Google Scholar
  32. Pieber M (2004) Waste collection from urban households in Europe and Australia. Waste Manag World:111–124Google Scholar
  33. Ramos TRP, Gomes MI, Barbosa-Póvoa AP (2014a) Economic and environmental concerns in planning recyclable waste collection systems. Transp Res E Logist Transp Rev 62:34–54CrossRefGoogle Scholar
  34. Ramos TRP, Gomes MI, Barbosa-Póvoa AP (2014b) Planning a sustainable reverse logistics system: balancing costs with environmental and social concerns. Omega 48:60–74CrossRefGoogle Scholar
  35. Rhyner CR, Schwartz LJ, Wenger RB, Kohrell MG (1995) Waste management and resource 568 recovery. CRC Press/Lewis Publishers, Boca RatonGoogle Scholar
  36. Rimaitytė I, Ruzgas T, Denafas G et al (2012) Application and evaluation of forecasting methods for municipal solid waste generation in an eastern-European city. Waste Manag Res 30:89–98CrossRefGoogle Scholar
  37. Ross DE (2010) Editorial - affordability is key to proper solid waste management. Waste Manag Res 28:287–288CrossRefGoogle Scholar
  38. Satué S (2000) Gestión Eficiente: fase de recogida selectivaGoogle Scholar
  39. Scharff C, Vogel G (1994) A comparison of collections systems in European cities. Waste Manag Res 12(5):387–404CrossRefGoogle Scholar
  40. Sniezek J, Bodin L (2006) Using mixed integer programming for solving the capacitated arc routing problem with vehicle/site dependencies with an application to the routing of residential sanitation collection vehicles. Ann Oper Res 144:33–58CrossRefGoogle Scholar
  41. Tanskanen J, Melanen M (1999) Modelling separation strategies of municipal solid waste in Finland. Waste Manag Res 17:80–92CrossRefGoogle Scholar
  42. Tao J (2010) Reverse logistics information system of e-waste based on internet. In: Proceedings of the 2010 international conference on challenges in environmental science and computer engineering (CESCE), pp 447–450CrossRefGoogle Scholar
  43. Tavares G, Zsigraiova Z, Semiao V, Carvalho MDG (2009) Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling. Waste Manag 29(3):1176–1185CrossRefGoogle Scholar
  44. Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management. Engineering principles and management issues. McGraw-Hill International Editions, New YorkGoogle Scholar
  45. Tralhão L, Coutinho-Rodrigues J, Alçada-Almeida L (2010) A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste. Waste Manag 30(12):2418–2429CrossRefGoogle Scholar
  46. Urban Upgrading (2001) Waste collection. http://web.mit.edu/urbanupgrading/upgrading/issues-tools/issues/waste-collection.html. Assessed March 2018
  47. Vijay R, Gautam A, Kalamdhad A et al (2008) GIS-based locational analysis of collection bins in municipal solid waste management systems. J Environ Eng Sci 7:39–43CrossRefGoogle Scholar
  48. Viotti P, Polettini A, Pomi R, Carlo I (2003) Genetic algorithms as a promising tool for optimisation of the MSW collection routes. Waste Manag Res 21(4):292–298CrossRefGoogle Scholar
  49. Wilson DC, Scheinberg A (2010) What is good practice in solid waste management? Waste Manag Res 28:1055–1056CrossRefGoogle Scholar
  50. Winston WL, Goldberg JB (2004) Operations research: applications and algorithms. Thomson Brooks/Cole, BelmontGoogle Scholar
  51. WRAP (2013) Bring site recycling. Project code: BHC002–207. Available at: http://www.wrap.org.uk/sites/files/wrap/Bring%20Site%20Draft%20Report%20v5%20JB%20amends_0.pdf. Accessed March 2018
  52. Zsigraiova Z, Semiao V, Beijoco F (2013) Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of MSW collection routes using GIS, the case study of Barreiro, Portugal. Waste Manag 33(4):703–806CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ana Pires
    • 1
  • Graça Martinho
    • 1
  • Susana Rodrigues
    • 1
  • Maria Isabel Gomes
    • 1
  1. 1.Faculty of Sciences and TechnologyUniversidade NOVA de Lisboa (FCT NOVA)CaparicaPortugal

Personalised recommendations