Technology Status of Waste Collection Systems

  • Ana Pires
  • Graça Martinho
  • Susana Rodrigues
  • Maria Isabel Gomes


The increasing rate of waste production per capita, the technological advances in packaging products, and the new waste policy and the legal provisions adopted in developed countries created a constant change in the set of parameters that determine the design of solutions for integrated waste management, where waste collection plays a fundamental role. A vast spectrum of technologies for source-separated waste collection and devices was developed, making the evaluation and selection of the one to be applied a difficult task. The purpose of this chapter is to reduce the complexity of identifying, selecting, and benchmarking waste collection systems, presenting a taxonomic classification for the different technical solutions, related to the relevant parts of collection activities and critical equipment characteristics.


Containers Vehicles Classification Underground Surface Lift Crane Compaction Manual Assisted 


  1. Bautista J, Pereira J (2006) Modeling the problem of locating collection areas for urban waste management an application to the metropolitan area of Barcelona. Omega 34:617–629CrossRefGoogle Scholar
  2. Bilitewski B, Hardtle G, Marek K (1997) Waste management. Springer, BerlinCrossRefGoogle Scholar
  3. Bilitewski B, Wagner J Reichenbach J (2010) Best practice municipal waste management. Federal Environmental Agency, IntecusGoogle Scholar
  4. Bilitewski B, Wagner J, Reichenbach J (2018) Best practice municipal waste management. Umweltbundesamt, pdf publication:
  5. Contenur (2014) Catalogue contenur. Accessed 15 Feb 2014
  6. Dahlén L, Lagerkvist A (2010) Evaluation of recycling programmes in household waste collection systems. Waste Manag Res 28:577–586CrossRefGoogle Scholar
  7. Diaz LF, Savage GM, Eggerth LL (2005) Solid waste management. United Nations Environment Programme, ParisGoogle Scholar
  8. Ecofar (2013) Products Ecofar. Accessed 1 Mar 2014
  9. Equinord (2009) Products Equinord. Accessed 16 Feb 2014
  10. European Committee for Standardization (CEN) (2014) CEN/TC 183/WG 1 – waste containers.,FSP_LANG_ID:7293,25&cs=1963AB0E62521CCFF7015C670244E3A73. Accessed 10 Feb 2014
  11. Faccio M, Persona A, Zanin G (2011) Waste collection multi objective model with real time traceability data. Waste Manag 31:2391–2405CrossRefGoogle Scholar
  12. Gallardo A, Bovea MD, Colomer FJ, Prades M (2012) Analysis of collection systems for sorted househould waste in Spain. Waste Manag 32:1623–1633CrossRefGoogle Scholar
  13. Gonzalez-Torre P L, Adenso-Dıaz B, Ruiz-Torres A (2003). Some comparative factos regarding recycling collection systems in regions of the USA and Europe. J Environ Manag 69:129–138CrossRefGoogle Scholar
  14. Groot J, Bing X, Bos-Brouwers H, Bloemhof-Ruwaard J (2014) A comprehensive waste collection cost model applied to post-consumer plastic packaging waste. Resour Conserv Recycl 85:79–87CrossRefGoogle Scholar
  15. Heil (2014) Rear loaders. Accessed 5 Mar 2014Google Scholar
  16. Heil Farid (2014) Product groups. Accessed 1 Mar 2014
  17. Iriarte A, Gabarrell X, Rieradevall J (2009) LCA of selective waste collection systems in dense urban areas. Waste Manag 29:903–914CrossRefGoogle Scholar
  18. ISWA Working Group on Collection and Transportation Technology (ISWAWGCTT) (2004) Overview of household collection systems in different cities and regions. Report for the International Solid Waste AssociationGoogle Scholar
  19. Johansson OM (2006) The effect of dynamic scheduling and routing in a solid waste management system. Waste Manag 26:875–885CrossRefGoogle Scholar
  20. Kinshofer (2014) Container discharge units. Kinshofer. Accessed 1 Mar 2014
  21. Kogler T (2007) Waste collection – a report with support from ISWA Working Group on Collection and Transportation Technology. Report for the International Solid Waste AssociationGoogle Scholar
  22. Mofil (2014) Mofil monobloc compactors. http://www.mofilpt/fich_up/compactador%2015m3.pdf. Accessed 17 Feb 2014
  23. Molok (2009) Products Molok. Accessed 20 Feb 2014
  24. O’Leary PR (1999) Decision maker’s guide to solid waste management, 2nd edn. United States Environmental Protection Agency, Office of Solid Waste, RCRA Information Center, Washington, DCGoogle Scholar
  25. OVO Solutions (2012a) Underground systems. Accessed 10 Mar 2014
  26. OVO Solutions (2012b) Cyclea. Accessed 15 Feb 2014
  27. Petersen CHM, Berg PEO (2004) Use of recycling stations in Borlänge, Sweden – volume weights and attitudes. Waste Manag 24:911–918CrossRefGoogle Scholar
  28. Pieber MK (2004) Waste collection from urban households in Europe and Australia. Waste Manag World: July-August 2004, 111–124Google Scholar
  29. Poulsen OM, Niels OB, Niels E, Ase MH, Ulla II, Lelieveld D, Malmros P, Matthiasen L, Nielsen BH, Nielsen EM, Schibye B, Skov T, Stenbaek EI, Wilkins CK (1995) Collection of domestic waste – review of occupational health problems and their possible causes. Sci Total Environ 170:1–19CrossRefGoogle Scholar
  30. Resolur (2013) Advantages (in Spanish: Ventajas). Accessed 1 Mar 2014
  31. Rhyner CR, Schwartz LJ, Wenger RB, Kohrell MG (1995) Waste management and resource recovery. CRC Press/Lewis Publishers, Boca RatonGoogle Scholar
  32. Rodrigues S, Martinho G, Pires A (2016) Waste collection systems part a: a taxonomy. J Clean Prod 113:374–387CrossRefGoogle Scholar
  33. Ros Roca (2014) Products Ros Roca. Accessed 15 Feb 2014
  34. Sonesson U (2000) Modelling of waste collection – a general approach to calculate fuel consumption and time. Waste Manag Res 18:115–123CrossRefGoogle Scholar
  35. Sopsa (2012) Products semi underground. Accessed 20 Feb 2014
  36. Sotkon (2007) Mbe Sotkon – Underground containers for MSW – Technical description (in Spanish: Mbe Sotkon – Contenedores Subterráneos para RSU – Memória Técnica). Accessed 15 Oct 2010
  37. Sulo (2014) Products. Accessed 15 Feb 2014
  38. Tanskanen J, Melanen M (1999) Modelling separation strategies of municipal solid waste in Finland. Waste Manag Res 17:80–92CrossRefGoogle Scholar
  39. Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill, New YorkGoogle Scholar
  40. TNL (2014b) Waste system Sidetainer. TNL. Accessed 1 Mar 2014
  41. TNL (2014c) Waste system ecotainer. TNL. Accessed 1 Mar 2014
  42. TNL (2014d) Waste system bigtainer. TNL. Accessed 1 Mar 2014
  43. Uriarte FA (2008) Solid waste management: principles and practices. The University of the Philippines Press, Quezon CityGoogle Scholar
  44. Villiger (2014). Sub-Vil: the Idea to Make Waste Disappear Underground. Villiger. Accessed 20 Feb 2014
  45. Weber (2006) Products Weber. Accessed 15 Feb 2014

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ana Pires
    • 1
  • Graça Martinho
    • 1
  • Susana Rodrigues
    • 1
  • Maria Isabel Gomes
    • 1
  1. 1.Faculty of Sciences and TechnologyUniversidade NOVA de Lisboa (FCT NOVA)CaparicaPortugal

Personalised recommendations