Multi-criteria Decision-Making in Waste Collection to Reach Sustainable Waste Management

  • Ana Pires
  • Graça Martinho
  • Susana Rodrigues
  • Maria Isabel Gomes


Multi-criteria decision analysis (MCDA) is concerned with theory and methodology that can deal with complex problems encountered in sustainable waste management. It provides methodologies to support decision-makers when selecting the best compromise among a set of alternative characterized by different and conflicting criteria. The top five methods used in solid waste management (SAW, AHP, TOPSIS, PROMETHEE, ELECTRE) are described with detail. The existence of multiple stakeholders and MCDA software is also addressed. This chapter ends with five case studies providing an overview of how these methods have been supporting decision-making in SWM.r


AHP ELECTRE PROMETHEE SAW Stakeholders Sustainable decisions TOPSIS Waste management 


  1. Achillas C, Moussiopoulos N, Karagiannidis A et al (2013) The use of multi-criteria decision analysis to tackle waste management problems: a literature review. Waste Manag Res 31:115–129CrossRefGoogle Scholar
  2. Adelman L (2013) Choice theory. In: Gass S, Fu M (eds) Encyclopedia of operations research and management science. Springer US, pp 164–168Google Scholar
  3. Belton V, Pictet J (1997) A framework for group decision using a mcda model: sharing, aggregating or comparing individual information? J Decis Syst 6:283–303CrossRefGoogle Scholar
  4. Brans JP, De Smet Y (2016) PROMETHEE methods. In: Figueira J, Greco S, Ehrgott M (eds) Multi criteria decision analysis: state of the art surveys. Springer, New York, pp 187–219CrossRefGoogle Scholar
  5. Buchholz T, Rametsteiner E, Volk TA, Luzadis VA (2009) Multi criteria analysis for bioenergy systems assessments. Energy Policy 37(2):484–495CrossRefGoogle Scholar
  6. Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol Indic 46:138–148CrossRefGoogle Scholar
  7. Clemen RT, Reilly T (2013) Making hard decisions with decision tools. Cengage Learning, MasonGoogle Scholar
  8. Council, European Parliament (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain. Directives Off J Eur Commun, L312/3Google Scholar
  9. Ferreira F, Avelino C, Bentes I et al (2017) Assessment strategies for municipal selective waste collection schemes. Waste Manag 59:3–13CrossRefGoogle Scholar
  10. Figueira JR, Mousseau V, Roy B (2016a) Electre methods. In: Figueira J, Greco S, Ehrgott M (eds) Multi criteria decision analysis: state of the art surveys. Springer, New York, pp 155–185CrossRefGoogle Scholar
  11. Figueira JR, Ehrgott M, Greco S (eds) (2016b) Multiple criteria decision analysis: state of the art surveys. Springer, New YorkGoogle Scholar
  12. Garfì M, Tondelli S, Bonoli A (2009) Multi-criteria decision analysis for waste management in Saharawi refugee camps. Waste Manag 29:2729–2739CrossRefGoogle Scholar
  13. Goulart-Coelho LM, Lange LC, Coelho HM (2017) Multi-criteria decision making to support waste management: a critical review of current practices and methods. Waste Manag Res 35:3–28CrossRefGoogle Scholar
  14. Gómez-Delgado M, Tarantola S (2006) GLOBAL sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20(4), 449–466CrossRefGoogle Scholar
  15. Guitouni A, Martel JM (1998) Tentative guidelines to help choosing an appropriate MCDA method. Eur J Oper Res 109:501–521CrossRefGoogle Scholar
  16. Hajkowicz S, Higgins A (2008) A comparison of multiple criteria analysis techniques for water resource management. Eur J Oper Res 184:255–265CrossRefGoogle Scholar
  17. Herva M, Roca E (2013) Ranking municipal solid waste treatment alternatives based on ecological footprint and multi-criteria analysis. Ecol Indic 25:77–84CrossRefGoogle Scholar
  18. Hwang C.-L. and Yoon K (1981) Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, BerlinCrossRefGoogle Scholar
  19. MacDonald ML (1996) A multi-attribute spatial decision support system for solid waste planning. Comput Environ Urban Syst 20:1–17CrossRefGoogle Scholar
  20. Malczewski J (2006) GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20:703–726CrossRefGoogle Scholar
  21. Marsh K, Goetghebeur M, Thokala P et al (eds) (2017) Multi-criteria decision analysis to support healthcare decisions. Springer, USGoogle Scholar
  22. Milutinović B, Stefanović G, Dassisti M et al (2014) Multi-criteria analysis as a tool for sustainability assessment of a waste management model. Energy 74:190–201CrossRefGoogle Scholar
  23. Mustajoki J, Marttunen M (2017) Comparison of multi-criteria decision analytical software for supporting environmental planning processes. Environ Model Softw 93:78–91CrossRefGoogle Scholar
  24. Nyerges TL, Jankowski P (2009) Regional and urban GIS: a decision support approach. Guilford Press, UKGoogle Scholar
  25. Pérez J (1995) Some comments on Saaty’s AHP. Manag Sci 41:1091–1095CrossRefGoogle Scholar
  26. Pires A, Chang NB, Martinho G (2011) An AHP-based fuzzy interval TOPSIS assessment for sustainable expansion of the solid waste management system in Setúbal peninsula, Portugal. Resour Conserv Recycl 56:7–21CrossRefGoogle Scholar
  27. Reichert P, Schuwirth N, Langhans S (2013) Constructing, evaluating and visualizing value and utility functions for decision support. Environ Model Softw 46:283–291CrossRefGoogle Scholar
  28. Roy B (1989) Main sources of inaccurate determination, uncertainty and imprecision in decision models. Math Comput Model 12:1245–1254CrossRefGoogle Scholar
  29. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  30. Soltani A, Hewage K, Reza B, Sadiq R (2015) Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: a review. Waste Manag 35:318–328CrossRefGoogle Scholar
  31. Taha HA (2003) Operations research: an introduction. Prentice-Hall of India Private Limited, USGoogle Scholar
  32. Vafaei N, Ribeiro RA, Camarinha-Matos LM (2016) Normalization techniques for multi-criteria decision making: analytical hierarchy process case study. In: Camarinha-Matos LM, Falcão AJ, Vafaei N, Najdi S (eds) Doctoral conference on computing, electrical and industrial systems. Springer, Cham, pp 261–269Google Scholar
  33. Van Den Hove S (2006) Between consensus and compromise: acknowledging the negotiation dimension in participatory approaches. Land use policy, 23(1):10–17CrossRefGoogle Scholar
  34. Wang M, Yang J (1998) A multi-criterion experimental comparison of three multi-attribute weight measurement methods. J Multi-Criteria Decis Anal 7:340–350CrossRefGoogle Scholar
  35. Weistroffer HR, Li Y (2016) Multiple criteria decision analysis software. In: Figueira J, Greco S, Ehrgott M (eds) Multi criteria decision analysis: state of the art surveys. Springer, New York, pp 1301–1341CrossRefGoogle Scholar
  36. Wiecek M, Ehrgott M, Fadel G, Figueira JR (2008) Multiple criteria decision making for engineering. Omega 36:337–339CrossRefGoogle Scholar
  37. Yadav V, Karmakar S, Dikshit AK, Bhurjee AK (2018) Interval-valued facility location model: an appraisal of municipal solid waste management system. J Clean Prod 171:250–263CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ana Pires
    • 1
  • Graça Martinho
    • 1
  • Susana Rodrigues
    • 1
  • Maria Isabel Gomes
    • 1
  1. 1.Faculty of Sciences and TechnologyUniversidade NOVA de Lisboa (FCT NOVA)CaparicaPortugal

Personalised recommendations