Advertisement

Optimization in Waste Collection to Reach Sustainable Waste Management

  • Ana Pires
  • Graça Martinho
  • Susana Rodrigues
  • Maria Isabel Gomes
Chapter

Abstract

This chapter focuses on one of the most used OR techniques which is optimization with linear programming modeling. This technique suits many problems faced when designing and operating a sustainable solid waste system. Single and multiple objective problems will be presented, and some OR special problems will be described with detail (the traveling salesman problem, the vehicle routing problem, the Chinese postman problem, the transportation problem, and the location problem). These problems appear in communal site collection and container collection, curbside collection, and location of containers or landfills, to name a few. Since in real-world problems, decision-makers pursue conflicting goals, strategies to deal with such issues are also presented. Several case studies are described, providing a deeper understanding of the applicability of such techniques.

Keywords

Cost optimization Environmental impact Multi-objective programming Postman problem Single objective programming Social impact Vehicle routing problem 

References

  1. Antunes CH, Alves MJ, Clímaco J (2016) Multiobjective linear and integer programming. EURO advanced tutorials on operational research. Springer, SchweizCrossRefGoogle Scholar
  2. Applegate DL, Bixby RE, Chvaátal V et al (2006) The Traveling Salesman Problem: a computational study. Princeton series in applied mathematics Princeton. Princeton University Press, PrincetonGoogle Scholar
  3. Badran MF, El-Haggar SM (2006) Optimization of municipal solid waste management in Port Said–Egypt. Waste Manag 26(5):534–545CrossRefGoogle Scholar
  4. Barth M, Scora G, Younglove T (2004) Modal emissions model for heavy-duty diesel vehicles. Transp Res Rec 1880:10–20CrossRefGoogle Scholar
  5. Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. John Wiley & Sons, New YorkGoogle Scholar
  6. Beliën J, De Boeck L, Van Ackere J (2014) Municipal solid waste collection and management problems: a literature review. Transp Sci 48:78–102CrossRefGoogle Scholar
  7. Beltrami EJ, Bodin LD (1974) Networks and vehicle routing for municipal waste collection. Networks 4(1):65–94CrossRefGoogle Scholar
  8. Benavent E, Corberán A, Sanchis JM (2000) Linear programming based methods for solving arc routing problems. In: Dror M (ed) Arc routing: theory, solutions and applications. Springer, Boston, pp 231–275CrossRefGoogle Scholar
  9. Benayoun R, De Montgolfier J, Tergny J et al (1971) Linear programming with multiple objective functions: step method (STEM). Math Program 1(1):366–375CrossRefGoogle Scholar
  10. Bertsimas D, Tsitsiklis JN (1997) Introduction to linear optimization. Athena Scientific, BelmontGoogle Scholar
  11. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, BerlinGoogle Scholar
  12. Bisschop J, Meeraus A (1982) On the development of a general algebraic modeling system in a strategic planning environment. In: Goffin JL, Rousseau JM (eds) Applications, mathematical programming studies, vol 20. Springer, Berlin/Heidelberg, pp 1–29Google Scholar
  13. Blazquez CA, Beghelli A, Meneses VP (2012) A novel methodology for determining low-cost fine particulate matter street sweeping routes. JAPCA J Air Waste Manage Assoc 62(2):242–251CrossRefGoogle Scholar
  14. Braier G, Durán G, Marenco J et al (2017) An integer programming approach to a real-world recyclable waste collection problem in Argentina. Waste Manag Res 35(5):525–533CrossRefGoogle Scholar
  15. Drud AS (1994) CONOPT – a large-scale GRG code. ORSA J Comput 6(2):207–216CrossRefGoogle Scholar
  16. European Parliament, Council (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off J Eur Union L312:3–30 Google Scholar
  17. Eiselt HA, Sandblom CL (2007) Linear programming and its applications. Springer Science & Business Media, Berlin/HeidelbergGoogle Scholar
  18. Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Eur J Oper Res 40(3):275–291CrossRefGoogle Scholar
  19. Erkut E, Karagiannidis A, Perkoulidis G, Tjandra SA (2008) A multicriteria facility location model for municipal solid waste management in North Greece. Eur J Oper Res 187:1402–1421CrossRefGoogle Scholar
  20. Filipiak KA, Abdel-Malek L, Hsieh HN et al (2009) Optimization of municipal solid waste collection system: case study. Pract Period Hazard Toxic Radioact Waste Manage 13(3):210–216CrossRefGoogle Scholar
  21. Fourer R, Gay DM, Kernighan BW (2002) AMPL: a modeling language for mathematical programming. Duxbury PressGoogle Scholar
  22. Furtado P, Gomes MI, Barbosa-Povoa AP (2011) Design of an electric and electronic equipment recovery network in Portugal-Costs vs. Sustainability. In: Pistikopoulos N, Georgiadis MC, Kokossis AC (eds) Computer aided chemical engineering, vol 29. Elsevier, Amsterdam, pp 1200–1204Google Scholar
  23. Ghiani G, LaganÁ D, Manni E, Musmanno R, Vigo D, (2014) Operations research in solid waste management: A survey of strategic and tactical issues. Comput. Oper. Res. 44, 22–32CrossRefGoogle Scholar
  24. Goedkoop M, Oele M, Leijting J, Ponsioen T, Meijer E (2004) SimaPro 6-Introduction to LCA with SimaPro. Amersfoort, the Netherlands: PRé ConsultantsGoogle Scholar
  25. Gomes MI, Barbosa-Povoa AP (2014) Projecto de uma rede logística para a recolha de equipamentos elétricos e eletrónicos. In: Oliveira RC, Ferreira JS (eds) Investigação operacional em ação: casos de aplicação. Imprensa da Universidade de Coimbra, chapter 11.Google Scholar
  26. Greenberg H, Morrison T (2008) Chapter 14: Robust optimization. In: Ravindran AR (ed) Operations research and management science. CRC Press, Boca RatonGoogle Scholar
  27. Gurobi Optimization, Inc. (2016) Gurobi optimizer reference manual. http://www.gurobi.com
  28. Hillier FS, Lieberman GJ (2014) Introduction to operations research. McGraw Hill. Inc., New YorkGoogle Scholar
  29. Hoffman KL, Padberg M, Rinaldi G (2013) Traveling salesman problem. In: Encyclopedia of operations research and management science. Springer US, Berlin, pp 1573–1578CrossRefGoogle Scholar
  30. IBM ILOG CPLEX Optimization Studio (2017a) CPLEX User’s Manual Version 12 Release 7. www.cplex.com
  31. IBM ILOG CPLEX Optimization Studio (2017b) OPL Language User’s Manual Version 12 Release 7. https://www.ibm.com/support/knowledgecenter/en/SSSA5P
  32. Khorram E, Zarepisheh M, Ghaznavi-Ghosoni BA (2010) Sensitivity analysis on the priority of the objective functions in lexicographic multiple objective linear programs. Eur J Oper Res 207(3):1162–1168CrossRefGoogle Scholar
  33. Laporte G (2007) What you should know about the vehicle routing problem. Nav Res Logist 54:811–819CrossRefGoogle Scholar
  34. Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43:408–416CrossRefGoogle Scholar
  35. Laporte G (2010) A concise guide to the traveling salesman problem. J Oper Res Soc 61(1):35–40CrossRefGoogle Scholar
  36. Luenberger DG, Ye Y (2016) Linear and nonlinear programming. In: Price CC (ed) International series in operations research & management science, vol 228. Springer International Publishing, ChamGoogle Scholar
  37. Mavrotas G (2009) Effective implementation of the epsilon-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213:455–465Google Scholar
  38. Miettinen K, Ruiz F, Wierzbicki AP (2008) Multiobjective optimization: introduction to multiobjective optimization: interactive approaches. In: Branke J, Deb K, Miettinen K, Słowiński R (eds) Lecture notes in computer science, vol 5252. Springer, Berlin/Heidelberg, pp 27–57Google Scholar
  39. Murtagh BA, Saunders MA (1983) MINOS 5.4 User’s Guide. Report SOL 83-20R, Systems Optimization LaboratoryGoogle Scholar
  40. Owen SH, Daskin MS (1998) Strategic facility location: a review. Eur J Oper Res 111:423–447CrossRefGoogle Scholar
  41. Perkoulidis G, Papageorgiou A, Karagiannidis A, Kalogirou S, (2010) Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives. Waste Manag. 30, 1395–1406CrossRefGoogle Scholar
  42. Pet-Armacost J, Mollaghasemi M, Armacost RL (2013) Interactive multiple objective mathematical programming. In: Gass S, Fu M (eds) Encyclopedia of operations research and management science. Springer US, Boston, pp 784–792CrossRefGoogle Scholar
  43. Ramos TRP, Gomes MI, Barbosa-Póvoa AP (2014) Economic and environmental concerns in planning recyclable waste collection systems. Transp Res Part E Logist Transp Rev 62:34–54CrossRefGoogle Scholar
  44. Roberti R, Toth P (2012) Models and algorithms for the asymmetric traveling salesman problem: an experimental comparison. EURO J Transp Logist 1(1–2):113–133CrossRefGoogle Scholar
  45. Sioshansi R, Conejo AJ (2017) Optimization in engineering: models and algorithms, vol 120. Springer, ChamGoogle Scholar
  46. Steuer R (1986) Multiple criteria optimization: theory computation and application. Wiley, New YorkGoogle Scholar
  47. Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math Program 103(2):225–249CrossRefGoogle Scholar
  48. Vanderbei RJ (2015) Linear programming. Springer, HeidelbergGoogle Scholar
  49. Verter V (2011) Uncapacitated and capacitated facility location problems. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, Boston, pp 25–37CrossRefGoogle Scholar
  50. Williams HP (2013) Model building in mathematical programming. Wiley, UKGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ana Pires
    • 1
  • Graça Martinho
    • 1
  • Susana Rodrigues
    • 1
  • Maria Isabel Gomes
    • 1
  1. 1.Faculty of Sciences and TechnologyUniversidade NOVA de Lisboa (FCT NOVA)CaparicaPortugal

Personalised recommendations