Advertisement

Phylogeny-Based Measures of Biodiversity When Data Is Scarce: Examples with the Vascular Flora of Chile and California

  • Rosa A. Scherson
  • Taryn Fuentes-Castillo
  • Rafael Urbina-Casanova
  • Patricio Pliscoff
Chapter

Abstract

The urgency for conserving biodiversity has elicited much research on how to determine its “value” for conservation. The use of phylogenetic diversity (PD) has provided a quantitative framework to assess biodiversity at different taxonomic levels and spatial scales. PD assessments at any spatial resolution need a reasonably well-resolved phylogeny and distribution data for the target taxa. Because of the explosive growth of phylogenetic work, it is becoming easier to get phylogenetic information for a given group. However, distribution data is much harder to obtain. Using examples from world flora, this study explores the correlation between PD-related studies and availability of distribution data. We found that most PD studies in plants have been done in a handful of countries, which correlate with the amount of available distribution information. In order to address the question of whether PD studies should be done in places where information is scarce, we took two recent studies in which PD was calculated – the flora of Chile and California – as examples of poor and good sampling efforts of herbaria data, respectively. We randomly pruned the California database to see if and how spatial patterns of PD change with data depletion. We show that if redundancy (a measure of sampling) is kept at reasonable levels, meaning using larger grid sizes, PD patterns could still be inferred even with 25% of the original data. We argue that these studies are worth doing even with poor data sets, since even coarse PD patterns can point at places where future studies, and conservation efforts, should be focused.

Notes

Acknowledgments

The research reported in this chapter was partially funded by FONDECYT grant 1171586 to R.S and CONICYT PII20150091 to P.P. We are grateful to María José Román, Paulina Uren and Diego Vera for help in building the database and to Felix Forest for critical reading and helpful comments on the manuscript.

References

  1. Arroyo MTK et al (2004) Chilean winter rainfall-Valdivian forest. In: Mittermeier RA et al (eds) Hotspots revisited: Earth’s biologically wealthiest and most threatened ecosystems. CEMEX, Mexico DFGoogle Scholar
  2. Arroyo MTK et al (2008) El hotspot chileno, prioridad mundial para la conservación. In: CONAMA (ed) Biodiversidad de Chile, patrimonio y desafios, 3rd edn. Ocho Libros, SantiagoGoogle Scholar
  3. Brako L, Zarucchi J (1993) Catálogo de las angiospermas y gimnospermas de Perú. Systematic Botany Missouri Botanical Garden, Missouri, p 45Google Scholar
  4. Brooks TM et al (2015) Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas? Philos Trans R Soc B 370:20140019CrossRefGoogle Scholar
  5. Buerki S et al (2015) Incorporating evolutionary history into conservation planning in biodiversity hotspots. Philosophical Transactions of the Royal Society B 370:20140014Google Scholar
  6. CAPP (2008) Informe país: estado del medio ambiente en Chile. In: Universidad de Chile, Instituto de asuntos Públicos (Ed.) UEdiciones Universidad de Chile, Santiago, ChileGoogle Scholar
  7. Cardoso P et al (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv. Elsevier Ltd 144(11):2647–2655.  https://doi.org/10.1016/j.biocon.2011.07.024CrossRefGoogle Scholar
  8. CONAMA (2008) Biodiversidad de Chile, Patrimonio y DesafÚos, Ocho Libros Editores, Santiago de Chile, pp 640Google Scholar
  9. Davies TJ et al (2008) Colloquium paper: phylogenetic trees and the future of mammalian biodiversity. Proc Natl Acad Sci U S A 105(Suppl 1):11556–11563.  https://doi.org/10.1073/pnas.0801917105CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daru BH, Park DS, Primack RB, et al (2018) Widespread sampling biases in herbaria revealed from large-scale digitization. New Phytol 217:939–955.  https://doi.org/10.1111/nph.14855
  11. Dunn CE, Atkins PJ, Townsend JG (1997) GIS for development: a contradiction in terms? Area 29:151–159Google Scholar
  12. Faith DP (1992a) Systematics and conservation: on predicting the feature odiversity of subsets of taxa. Cladistics Int J Willi Hennig Soc 8:361–373CrossRefGoogle Scholar
  13. Faith DP (1992b) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10.  https://doi.org/10.1016/0006-3207(92)91201-3.CrossRefGoogle Scholar
  14. Faith DP (2015a) Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos Trans R Soc B Biol Sci 370(1662):20140011–20140011.  https://doi.org/10.1098/rstb.2014.0011.CrossRefGoogle Scholar
  15. Faith DP (2015b) The unimodal relationship between species’ functional traits and habitat gradients provides a family of indices supporting the conservation of functional trait diversity. Plant Ecol. Springer Netherlands 216(5):725–740.  https://doi.org/10.1007/s11258-015-0454-zCrossRefGoogle Scholar
  16. Faith DP, Baker AM (2006) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinformatics Online 2:121–128. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2674678&tool=pmcentrez&rendertype=abstractGoogle Scholar
  17. Faith DP, Magallón S, Hendry AP, et al (2010) Evosystem services: An evolutionary perspective on the links between biodiversity and human well-being. Curr Opin Environ Sustain 2:66–74.  https://doi.org/10.1016/j.cosust.2010.04.002
  18. Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends Ecol Evol 19(7):391–398.  https://doi.org/10.1016/j.tree.2004.05.004CrossRefPubMedGoogle Scholar
  19. Forest F et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445(7129):757–760.  https://doi.org/10.1038/nature05587CrossRefPubMedGoogle Scholar
  20. Forest F, Crandall KA, Chase MW, Faith DP et al (2015) Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos Trans R Soc Lond Ser B Biol Sci 370(1662):20140002.  https://doi.org/10.1098/rstb.2014.0002.CrossRefGoogle Scholar
  21. Guerin GR et al (2016) Identifying centres of plant biodiversity in South Australia. PLoS One 11(1):e0144779.  https://doi.org/10.1371/journal.pone.0144779CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hortal J, Lobo JM, Jiménez-Valverde A (2007) Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv Biol 21(3):853–863.  https://doi.org/10.1111/j.1523-1739.2007.00686.xCrossRefPubMedGoogle Scholar
  23. INE (2002). Insituto Nacional de EstadÚsticas, Censo 2002. Santiago, ChileGoogle Scholar
  24. Laffan SW, Lubarsky E, Rosauer DF (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography (Cop) 33:643–647.  https://doi.org/10.1111/j.1600-0587.2010.06237.x
  25. Lomolino M (2004) Conservation biogeography. In: Lomolino M, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer Associates, Sunderland, pp 293–296Google Scholar
  26. Luebert F and Pliscoff P (2017). Sinopsis bioclimática y vegetacional de Chile, Segunda Edición. Editorial Universitaria, Santiago.Google Scholar
  27. Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300(5626):1707–1709.  https://doi.org/10.1126/science.1085510CrossRefPubMedGoogle Scholar
  28. Mace GM et al (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Chang 28:1–21.  https://doi.org/10.1016/j.gloenvcha.2014.07.009CrossRefGoogle Scholar
  29. Marchese C (2015) Biodiversity hotspots: a shortcut for a more complicated concept. Global Ecol Conserv Elsevier BV 3:297–309.  https://doi.org/10.1016/j.gecco.2014.12.008CrossRefGoogle Scholar
  30. Mennecke BE, West LAJ (2001) Geographic Information Systems in developing countries: issues in data collection , implementation and management. J Glob Inf Manag 9(4):44–54CrossRefGoogle Scholar
  31. Midgley GF et al (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451CrossRefGoogle Scholar
  32. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DCGoogle Scholar
  33. Mishler BD et al (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nat Commun 5:1–10.  https://doi.org/10.1038/ncomms5473CrossRefGoogle Scholar
  34. Moreira-Muñoz A (2011) Plant geography of Chile. Springer, SantiagoCrossRefGoogle Scholar
  35. Myers N et al (2000) Biodiversity hotspots for conservation priorities. Nature 403(February):853–858CrossRefGoogle Scholar
  36. Patsiou TS et al (2014) Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob Chang Biol 20(7):2286–2300CrossRefPubMedGoogle Scholar
  37. Phillips SJ et al (2009) Article Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data Reference Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. 19:181–197.  https://doi.org/10.1890/07-2153.1
  38. Pio DV et al (2011) Spatial predictions of phylogenetic diversity in conservation decision making. Conserv Biol 25(6):1229–1239.  https://doi.org/10.1111/j.1523-1739.2011.01773.xCrossRefPubMedGoogle Scholar
  39. Pio DV et al (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Glob Chang Biol 20(5):1538–1549.  https://doi.org/10.1111/gcb.12524CrossRefGoogle Scholar
  40. Pliscoff P, Fuentes-Castillo T (2011) Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Rev Geografía Norte Grande 79:61–79CrossRefGoogle Scholar
  41. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Constanza R et al (2009a) A safe operatinng space for humanity. Nature 461(September):472–475CrossRefGoogle Scholar
  42. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R et al (2009b) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2).  https://doi.org/10.1038/461472a
  43. Rosauer DF, Jetz W (2015) Phylogenetic endemism in terrestrial mammals. Glob Ecol Biogeogr 24(2):168–179.  https://doi.org/10.1111/geb.12237CrossRefGoogle Scholar
  44. Rosauer D et al (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18(19):4061–4072.  https://doi.org/10.1111/j.1365-294X.2009.04311.xCrossRefPubMedGoogle Scholar
  45. Scherson R a et al (2014) Endemicity and evolutionary value: a study of Chilean endemic vascular plant genera. Ecol Evol 4(4):806–816.  https://doi.org/10.1002/ece3.960CrossRefPubMedPubMedCentralGoogle Scholar
  46. Scherson RA et al (2017) Spatial phylogenetics of the vascular flora of Chile. Mol Phylogenet Evol. Elsevier Inc. 112:88–95.  https://doi.org/10.1016/j.ympev.2017.04.021CrossRefPubMedGoogle Scholar
  47. Sechrest W et al (2002) Hotspots and the conservation of evolutionary history. PNAS 99(17):17–21Google Scholar
  48. Sgrò CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4(2):326–337.  https://doi.org/10.1111/j.1752-4571.2010.00157.xCrossRefPubMedGoogle Scholar
  49. Steffen W et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855.  https://doi.org/10.1126/science.1259855CrossRefPubMedGoogle Scholar
  50. Sullivan BL et al (2014) The eBird enterprise: an integrated approach to development and application of citizen science. Biol Conserv Elsevier Ltd 169:31–40.  https://doi.org/10.1016/j.biocon.2013.11.003CrossRefGoogle Scholar
  51. Thornhill AH et al (2016) Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J Biogeogr.  https://doi.org/10.1111/jbi.12797
  52. Thornhill AH et al (2017) Spatial phylogenetics of the native California flora. BMC Biol 15(1):96.  https://doi.org/10.1186/s12915-017-0435-xCrossRefPubMedPubMedCentralGoogle Scholar
  53. Thuiller W et al (2011) Consequences of climate change on the tree of life in Europe. Nature 470(7335):531–534.  https://doi.org/10.1038/nature09705CrossRefPubMedGoogle Scholar
  54. Urbina-Casanova R, Saldivia P, Scherson RA (2015) Consideraciones sobre la sistemática de las familias y los géneros de plantas vasculares endémicos de Chile. Gayana Botánica 72(2):272–295Google Scholar
  55. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—systematics and the agony of choice. Biol Conserv 55(3):235–254.  https://doi.org/10.1016/0006-3207(91)90030-DCrossRefGoogle Scholar
  56. Villagrán C, Armesto JJ (2005) Fitogeografía histórica de la Cordilera de la Costa de Chile. In: Smith-Ramirez C, Armesto JJ, Valdovinos C (eds) Historia, biogeografía y ecología de los bosques costeros de Chile, 1st edn. Editorial Universitaria, Santiago, pp 99–115Google Scholar
  57. Wilson KA et al (2006) Prioritizing global conservation efforts. Nature 440(7082):337–340.  https://doi.org/10.1038/nature04366CrossRefPubMedGoogle Scholar
  58. Wood C et al (2011) eBird: engaging birders in science and conservation. PLoS Biol 9(12).  https://doi.org/10.1371/journal.pbio.1001220
  59. Zhang J et al (2015) Gains and losses of plant species and phylogenetic diversity for a northern high-latitude region. Divers Distrib 21(12):1441–1454.  https://doi.org/10.1111/ddi.12365CrossRefGoogle Scholar
  60. Zuloaga FO, Morrone O, Rodriguez D (1999) Análisis de la biodiversidad en plantas vasculares de la Argentina. Kurtziana 27(1):17–167Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rosa A. Scherson
    • 1
  • Taryn Fuentes-Castillo
    • 2
  • Rafael Urbina-Casanova
    • 1
    • 3
  • Patricio Pliscoff
    • 2
    • 4
  1. 1.Departamento de Silvicultura y Conservación de la Naturaleza, Facultad de Ciencias Forestales y Conservación de la NaturalezaUniversidad de ChileSantiagoChile
  2. 2.Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Biota – Gestión y Consultorías ambientales Ltda.Providencia, SantiagoChile
  4. 4.Instituto de Geografía, Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations