Advertisement

Big Data: A Global Overview

  • Celia Satiko Ishikiriyama
  • Carlos Francisco Simoes Gomes
Chapter
Part of the Studies in Big Data book series (SBD, volume 42)

Abstract

More and more, society is learning how to live in a digital world that is becoming engulfed in data. Companies and organizations need to manage and deal with their data growth in a way that compliments the data getting bigger, faster and exponentially more voluminous. They must also learn to deal with data in new and different unstructured forms. This phenomenon is called Big Data. This chapter aims to present other definitions for Big Data, as well as technologies, analysis techniques, issues, challenges and trends related to Big Data. It also looks at the role and profile of the Data Scientist, in reference to functionality, academic background and required skills. The result is a global overview of what Big Data is, and how this new form is leading the world towards a new way of social construction, consumption and processes.

References

  1. 1.
    A. Affelt, Acting on big data a data scientist role for info pros. Online Search 38(5), 10–14 (2014)Google Scholar
  2. 2.
    D. Agrawal, Analytics based decision making. J. Indian Bus. Search 6, 332–340 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Alexandrov, R. Bergmann, S. Ewen et al., The Stratosphere platform for big data analytics. VLDB J. 23, 939–964 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Archenaa, E.A. Mary Anita, A survey of big data analytics in healthcare and government. Procedia Comput. Sci. 50, 408–413 (2015)CrossRefGoogle Scholar
  5. 5.
    M.D. Assunção, R.N. Calheiros, S. Bianchia et al., Big Data computing and clouds: trends and future directions. Parallel Distrib. Comput. 80, 03–15 (2013)Google Scholar
  6. 6.
    P. Barnaghi, A. Sheth, C. Henson, From data to actionable knowledge: big data challenges in the web of things. IEEE Intell. Syst. 28, 06–11 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Buyya, K. Ramamohanarao, C. Leckie et al., Big data analytics-enhanced cloud computing: challenges, architectural elements, and future direction. IEEE (2015).  https://doi.org/10.1109/ICPADS.2015.18CrossRefGoogle Scholar
  8. 8.
    A. Cardenas, P.K. Manadhata, S.P. Rajan, Big data analytics for security. IEEE Secur. Priv. 11(6), 74–76 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Chen, R.H.L. Chiang, V.C. Storey et al., Business intelligence and analytics: from big data to big impact. MIS Q 36(4), 1165–1188 (2012)Google Scholar
  10. 10.
    M. Chen, S. Mao, Y. Liu, Big data: a survey. Mobile Netw. Appl. 19, 171–209 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Chen, Y. Chen, X. Du et al., Big Data challenge: a data management perspective. Environ. Front. Comput. Sci. 7(2), 157–164 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Chen, C.Y. Zhang, Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inform. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  13. 13.
    T. Davenport, D.J. Patil, Data scientist: the sexiest job of the 21st century. Harv. Bus. Rev. (2012).  https://doi.org/10.1080/01639374.2016.1245231CrossRefGoogle Scholar
  14. 14.
    Dawar N (2016) Use Big Data to create value for customers, not just target them. Harv. Bus. Rev. https://hbr.org/2016/08/use-big-data-to-create-value-for-customers-not-just-target-them. Accessed 8 Sept 2017
  15. 15.
    S. Giest, Big data for policymaking: fad or fasttrack? Policy Sci. 50(3), 367–382 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Gandomi, M. Raider, Beyond the hype: big data concepts, methods, and analytics. IJIM 35(2), 137–144 (2015)Google Scholar
  17. 17.
    S. Earley, The digital transformation: staying competitive. IT Prof. 16, 58–60 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Earley, Analytics, machine learning, and the internet of things. IT Prof. 17, 10–13 (2015)CrossRefGoogle Scholar
  19. 18.
    N. Elgendy, A. Elragal, Big data analytics in support of the decision making process. Procedia Comput. Sci. 100, 1071–1084 (2016)CrossRefGoogle Scholar
  20. 19.
    K. Evans, Where in the world is my information? Giving people access to their data. IEEE Secur. Priv. 12(5), 78–81 (2014)CrossRefGoogle Scholar
  21. 21.
    C. Everett, Big data—the future of cyber-security or its latest threat? Comput. Fraud Secur. 9, 14–17 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Gandomi, M. Haider, Beyond the hype: big data concepts, methods, and analytics. Int. J. Inform. Manage. 35(2), 137–144 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Gupta, M. Goul, B. Dinter, Business intelligence and big data in higher education: status of a multi-year model curriculum development effort for business school undergraduates, MS graduates, and MBAs. Commun. Assoc. Inf. Syst. 36, 450–476 (2015)Google Scholar
  24. 24.
    K. Gillon, S. Aral, C.Y. Lin et al., Business analytics: radical shift or incremental change? Commun. Assoc. Inf. Syst. 34(1), 287–296 (2014)Google Scholar
  25. 25.
    D. Hand, Statistics and computing: the genesis of data science. Stat. Comput. 25, 705–711 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Helland, If you have too much data, then ‘Good Enough’ is Good Enough. Commun. ACM 54(6), 40–47 (2011)CrossRefGoogle Scholar
  27. 27.
    C. Ishikiriyama, Big data: um panorama global através de análise da literatura e survey. Dissertation, Universidade Federal Fluminense (2016)Google Scholar
  28. 28.
    N. Kabir, E. Carayannis, Big data, tacit knowledge and organizational competitiveness. J. Intell. Stud. Bus. 3(3), 220–228 (2013)Google Scholar
  29. 29.
    A. Katal, M. Wazid, R.H. Goudar, Big data: issues, challenges, tools and good practices. Contemp. Comput. (2013).  https://doi.org/10.1109/ic3.2013.6612229
  30. 30.
    N. Khan, I. Yaqoob, I. Abaker et al., Big data: survey, technologies, opportunities, and challenges. Sci. World J. (2014).  https://doi.org/10.1155/2014/712826CrossRefGoogle Scholar
  31. 31.
    G.H. Kim, S. Trimi, J.H. Chung, Big-data applications in the government sector. Commun. ACM 57, 78–85 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Koscielniak, A. Puto, Big Data in decision making process of enterprises. Procedia Comput. Sci. 65, 1052–1058 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Kraska, Finding the needle in the big data systems haystack. IEEE Internet Comput. 17(1), 84–86 (2013)CrossRefGoogle Scholar
  34. 34.
    N. Kshetri, Big data’s impact on privacy, security and consumer welfare. Telecommun. Policy 38(11), 1134–1145 (2014)CrossRefGoogle Scholar
  35. 35.
    D. Laney, 3-D data management: controlling data volume velocity and variety (2001), http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. Accessed 20 Dec 2015
  36. 36.
    D. Laney, Gartner predicts three big data trends for business intelligence (2015), http://www.forbes.com/sites/gartnergroup/2015/02/12/gartner-predicts-three-big-data-trends-for-business-intelligence/#5cc6fd8366a2. Accessed 20 Dec 2015
  37. 37.
    P.S.H. Leeflang, P.C. Verhoef, P. Dahlström et al., Challenges and solutions for marketing in a digital era. Eur. Manage. J. 32(1), 01–12 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Lin, Is big data a transient problem? IEEE Internet Comput. 16(5), 86–90 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Liu, W. Cui, Y. Wu et al., A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Maciejewski, To do more, better, faster and more cheaply: using big data in public administration. Int. Rev. Adm. Sci. 83(1S), 120–135 (2017)CrossRefGoogle Scholar
  41. 41.
    T. Matzner, Why privacy is not enough privacy in the context of and big data. J. Inf. 12(2), 93–106 (2014)Google Scholar
  42. 42.
    V. Mayer-Schonberger, K. Cukier, Big Data: como extrair volume, variedade, velocidade e valor da avalanche de informação cotidiana. Elsevier (2013)Google Scholar
  43. 43.
    D.E. O’Leary, Artificial intelligence and big data. IEEE Intell. Syst. 28, 96–99 (2013)CrossRefGoogle Scholar
  44. 44.
    D.J. Power, Using ‘Big Data’ for analytics and decision support. J. Decis. Syst. 23(2), 222–228 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Picciano, The evolution of big data and learning analytics in American higher education. J. Asynchronous Learn. Netw. 16(3), 09–21 (2012)Google Scholar
  46. 46.
    F. Provost, T. Fawcett, Data Science and Its Relationship to Big Data and Data-Driven Decision Making (Mary Ann Liebert, Inc., 2013).  https://doi.org/10.1089/big.2013.1508CrossRefGoogle Scholar
  47. 47.
    J. Reyes, The skinny on big data in education: learning analytics simplified. Techtrends 59(2), 75–80 (2015)CrossRefGoogle Scholar
  48. 48.
    M. Scherman, H. Krcmar, H. Hemsen et al., Big Data: an interdisciplinary opportunity for information systems research. Bus. Inf. Syst. Eng. 6(5), 261–266 (2014)CrossRefGoogle Scholar
  49. 49.
    J.P. Shim, A.M. French, J. Jablonski, Big data and analytics: issues, solutions, and ROI. Commun. Assoc. Inf. Syst. 37, 797–810 (2015)Google Scholar
  50. 50.
    P. Tambe, Big data investment, skills, and firm value. Manage. Sci. 60(6), 1452–1469 (2014)CrossRefGoogle Scholar
  51. 51.
    J. Tien, Big Data: unleashing information. J. Syst. Sci. Syst. Eng. 22(2), 127–151 (2013)CrossRefGoogle Scholar
  52. 52.
    W.M. To, L. Lai, Data analytics in China: trends, issues, and challenges. IT Prof. 17(4), 49–55 (2015)CrossRefGoogle Scholar
  53. 53.
    S. Vlaene, Data scientists aren’t domain experts. IT Prof. 15(6), 12–17 (2013)CrossRefGoogle Scholar
  54. 54.
    Z. Xiang, J.H. Gerdes, Z. Schwartz et al., What can big data and text analytics tell us about hotel guest experience and satisfaction? Int. J. Hospitality Manage. 44, 120–130 (2015)CrossRefGoogle Scholar
  55. 55.
    Y. Xiao, L.Y.Y. Lu, J.S. Liu et al., Knowledge diffusion path analysis of data quality literature: a main path analysis. J. Informetr. 8(3), 594–605 (2014)CrossRefGoogle Scholar
  56. 56.
    S.F. Wamba, S. Akter, A. Edwards et al., How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 165, 234–246 (2015)CrossRefGoogle Scholar
  57. 57.
    M. Waller, S. Fawcett, Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J. Bus. Logistics 34(2), 77–84 (2013)CrossRefGoogle Scholar
  58. 58.
    H. Watson, Tutorial: big data analytics: concepts, technologies, and applications. Commun. Assoc. Inf. Syst. 34(65), 1247–1268 (2014)Google Scholar
  59. 59.
    B. Wixom, T. Ariyachandra, D. Douglas et al., The current state of business intelligence in academia: the arrival of big data. Commun. Assoc. Inf. Syst. 34, 01–13 (2014)Google Scholar
  60. 60.
    X. Wu, X. Zhu, G.Q. Wu et al., Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Celia Satiko Ishikiriyama
    • 1
  • Carlos Francisco Simoes Gomes
    • 1
  1. 1.Universidade Federal FluminenseNiteroiBrazil

Personalised recommendations