Advertisement

The Time-Consistent Shapley Value for Two-Stage Network Games with Pairwise Interactions

  • Leon Petrosyan
  • Mariia Bulgakova
  • Artem Sedakov
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

In this paper, cooperative network games with pairwise interactions are considered. The cooperative version of games is investigated. For a particular type of networks, a simplified formula for the Shapley value based on a constructed characteristic function is derived. The time inconsistency of the Shapley value is shown.

Notes

Acknowledgements

This research was supported by the Russian Science Foundation (grant No. 17-11-01079).

References

  1. 1.
    Acemoglu, D., Ozdaglar, A., ParandehGheibi, A.: A Spread of (mis)information in social networks. Game Econ. Behav. 70(2), 194–227 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bulgakova, M.A., Petrosyan, L.A.: About strongly time-consistency of core in the network game with pairwise interactions. In: Proceedings of 2016 International Conference “Stability and Oscillations of Nonlinear Control Systems”, pp. 157–160 (2016)Google Scholar
  3. 3.
    Dyer, M., Mohanaraj, V.: Pairwise-interaction games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol. 6755, pp. 159–170 (2011)CrossRefGoogle Scholar
  4. 4.
    Dziubiński, M., Goyal, S.: Network design and defence. Game Econ. Behav. 79, 30–43 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hernández, P., Muñoz-Herrera, M., Sánchez, Á.: Heterogeneous network games: conflicting preference. Game Econ. Behav. 79, 56–66 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    König, M.D., Battiston, S., Napoletano, M., Schweitzer, F.: The efficiency and stability of R&D networks. Game Econ. Behav. 75(2), 694–713 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kuzyutin, D., Nikitina, M.: Time consistent cooperative solutions for multistage games with vector payoffs. Oper. Res. Lett. 45(3), 269–274 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Petrosyan, L.A., Danilov, N.N.: Stability of solutions of non-zero-sum game with transferable payoffs. Vestn. Leningr. Univ. Ser 1. Mat. Mekh. Astron. 19, 52–59 (1979)Google Scholar
  9. 9.
    Petrosyan, L.A., Sedakov, A.A.: Multistage network games with perfect information. Autom. Remote Control 75(8), 1532–1540 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Petrosyan, L.A., Sedakov, A.A.: The subgame-consistent Shapley value for dynamic network games with shock. Dyn. Games Appl. 6(4), 520–537 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Petrosyan, L.A., Sedakov, A.A., Bochkarev, A.O.: Two-stage network games. Autom. Remote Control 77(10), 1855–1866 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shapley, L.: A value for N-person games. In: Kuhn, H.W., Tucker, A.W. (eds). Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leon Petrosyan
    • 1
  • Mariia Bulgakova
    • 1
  • Artem Sedakov
    • 1
  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations